设∑是曲面x² y² z²=r²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:09:27
设∑是曲面x² y² z²=r²
设z=x+yi(x,y属于R),则满足等式|z+2|=-x的复数z对应的点的轨迹是

C|z+2|=-x两边平方得(x+2)^2+y^2=x^24x+y^2+4=0是抛物线

计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2

根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[

设曲面∑:x^2/a^2+y^2/b^2+z^2/c^2=1上的点(x,y,z)处的切平面为π,计算曲面积分∫∫∑1/λ

对曲面在第一象限内的部分,设x=a*r*costy=b*r*sint则z=c*sqrt(1-r^2)代入计算得到8*pi/3*abc*(1/a^2+1/b^2+1/c^2)再问:麻烦您写一下具体步骤呗

设x,y,z∈R,是、试比较5x^2+y^2+z^2与2xy+4x+2z-2的大小

5x^2+y^2+z^2-(2xy+4x+2z-2)=5x^2+y^2+z^2-2xy-4x-2z+2=(4x^2-4x+1)+(x^2-2xy+y^2)+(z^2-2z+1)=(2x-1)^2+(x

计算曲面积分(如图),其中∑是介于平面Z=0和Z=H(H>0)之间的圆柱面x^2+y^2=R^2

设x=ρcosθ,y=ρsinθ那么x²+y²=ρ²=R²原积分就变为∫(0到2π)∫(0到H)1/(R²+z²)dzdθ=2π∫(0到H)

1.设z=z(x,y)是由方程式e的z次方=xyz所含的隐函数,求dz 2.计算出曲面z=2-x^-y^2与xoy坐标面

1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d

设Z=x+yi(x,y属于R)|Z+2|-|Z-2|=4 复数Z所对应的点轨迹是

因为:|Z+2|表示为复平面上的点Z=x+yi到点A(-2,0)的距离|Z-2|表示为复平面上的点Z=x+yi到点B(2,0)的距离因为|Z+2|-|Z-2|=4=|AB|所以复数Z所对应的点轨迹是A

利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2

使用高斯公式后,化简后被积函数跟积分区域的圆柱体挺难构造关系,就按投影一步一步算吧.∑被积区域可以看成3个平面围成,S1:z=R,S2:z=-R,S3:x^2+y^2=R^2.可以看出S1,S2只在x

计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=

这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0

设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0

令f(x)=x^2+z*x+z^2+3*y(x+y+z)=x^2+(z+3*y)*x+z^2+3y^2+3yz,即把y、z看成常量,根的判别式=(z+3*y)^2-4(z^2+3y^2+3yz)=-3

设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS

好好学高数,这是以后学专业课的基础,不要网上问了,有人回答答案也是似是而非的,不会了问学霸同学,或者老师答疑的时候去问问再问:TT身边没有学霸。。课已经讲完了唉再答:x²+y²=9

曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-

这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆

设x,y,z属于R且3^x=4^y=6^z

先判断3x与6z,两边取对数,得x/z=log(底数是3,真数是6)小于2,那么3x

设x,y,z∈R+,且3x=4y=6z.

(1)证明:设3x=4y=6z=t.∵x>0,y>0,z>0,∴t>1,lgt>0,则x=log3t=lgtlg3,y=log4t=lgtlg4,z=log6t=lgtlg6.∴1z−1x=lg6lg

第一类曲面积分 r不知道怎么处理,是根号下x^2+y^2+z^2么?然后x y再用参数?求思路…在

根据r的定义,就是根号下x^2+y^2+z^2;(曲面积分定义)=积分号积分好)1/(R^2+z^2)dS后把圆柱侧面分成xoz对称的俩曲面,在右半侧面区面积分定义,按照投影到xoz坐标面的步骤

设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=

∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y&#

设∑是球面x^2+y^2+z^2=4,则曲面积分∮∫(x^2+y^2+z^2)dS=

面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y