设ζ,η相互独立,并服从区间[0,1]上的均匀分布,则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:26:55
令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y
fX(x)=1,x∈(0,1)其他为0.P(X1}=1-P{max{X,Y}
用分布函数法求解f(x)=1/2,0
Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2
由随机变量X服从区间[0,5]上的均匀分布,得出E(X)=5/2 由Y服从参数为3的指数分布,得出E(Y)=3 由X与Y相互独立,知E(XY)=E(X)×E(Y)=15/2再问:5/2的/是乘的意
用最小值公式.就一下出来了.再问:能告诉我答案吗?再答:Z=min{X,Y}f(z)=2(1-z)0
因为随机变量ξ,η相互独立,所以E(ξη)=E(ξ)E(η)而E(ξ)=1/λ,E(η)=np所以E(ξη)=np/λ
(1)由已知,f(x)=1,(0
fx(x)=1,fy(y)=e^-yfx,y(x,y)=fx(x)fy(y)=e^-yP(x>y)=P(x>y|Y=y)=1-P(x
密度函数f(x)=1,0
用方差性质如图计算,答案是43.经济数学团队帮你解答,请及时采纳.谢谢!
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
X和Y相互独立则有fx(x)*fy(y)=f(x,y)Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2然后就可以对联合分布P(Y
EX=3DX=3EY=5DY=2.5EZ=-7DZ=13
分别求出X和Y的概率密度,然后相乘,得到(X,Y)的分布密度. 过程如下图:
1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0
缺货概率为P{X>Y}=∫∫{X>Y}fXY(x,y)dxdy因为X,Y独立所以fXY(x,y)=fX(x)fY(y)=(1/a)(1/a)=1/a^2因为只需考虑x>y所以P{X>Y}=∫∫(1/a
0.52x+(118-x)*0.33=53