设ζ,η相互独立,并服从区间[0,1]上的均匀分布,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:26:55
设ζ,η相互独立,并服从区间[0,1]上的均匀分布,则
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

概率论:设随机变量X服从区间[0,5]上的均匀分布,Y服从参数为3的指数分布,且X与Y相互独立,求E(XY)

由随机变量X服从区间[0,5]上的均匀分布,得出E(X)=5/2  由Y服从参数为3的指数分布,得出E(Y)=3  由X与Y相互独立,知E(XY)=E(X)×E(Y)=15/2再问:5/2的/是乘的意

设随机变量X和Y相互独立,均服从[0,1]区间上的均匀分布,求min(X,Y)的概率密度函数

用最小值公式.就一下出来了.再问:能告诉我答案吗?再答:Z=min{X,Y}f(z)=2(1-z)0

随机变量的数学期望设随机变量ξ,η相互独立,ξ服从参数为λ的指数分布,η服从参数为n,p(0

因为随机变量ξ,η相互独立,所以E(ξη)=E(ξ)E(η)而E(ξ)=1/λ,E(η)=np所以E(ξη)=np/λ

设随机变量X服从正态分布N(10,4),Y在区间[0,6]上服从均匀分布,且X与Y相互独立,则D(2X-3Y)=?

用方差性质如图计算,答案是43.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X和Y相互独立,X服从区间(0.2)的均匀分布,Y服从均值为1/2的指数分布 求P(Y《X)

X和Y相互独立则有fx(x)*fy(y)=f(x,y)Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2然后就可以对联合分布P(Y

设随机变量X与Y为相互独立,X在区间(0,2)上服从均匀分布,Y服从指数分布e(2),求(X,Y)的分布密度.

分别求出X和Y的概率密度,然后相乘,得到(X,Y)的分布密度. 过程如下图: 

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设某种货物的需求量X与供应量Y都在区间[0,a]上服从均匀分布,并且两者相互独立,则缺货的概率为多少?

缺货概率为P{X>Y}=∫∫{X>Y}fXY(x,y)dxdy因为X,Y独立所以fXY(x,y)=fX(x)fY(y)=(1/a)(1/a)=1/a^2因为只需考虑x>y所以P{X>Y}=∫∫(1/a