设{x=2t^3 2,y=e^2t

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:28:26
设{x=2t^3 2,y=e^2t
设x=e'sin t,y=e'cos t,求dy/dx.

e'表示对自然对数e求导,e'=0但是在dy/dx的过程中由于分子和分母都有e',可以约掉,所以不用急着把分子分母都等于0,这样就做不出来了.dy/dx=(dy/dt)/(dx/dt)dy/dt=(e

x=(e^t)sint y=(e^t)cost 求d^2y/dx^2

dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d

设随机变量X,Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?

设 {x=2t^3+2 y=e^2t-1 ,求dy/dx,d^2y/dx^2

利用复合函数求导法.dy/dx=(dy/dt)/(dx/dt)=2e^(2t)/(6t^2)=e^(2t)/(3t^2)故d^2y/dx^2=d(dy/dx)/dx=[d(dy/dx)/dt]/(dx

【数学】求导设y=y(x)由{x=arctant,2y-ty^2+e^t =5 }确定,求dy/dx

dy/dx=(dy/dt)/(dx/dt)显然dx/dt=1/(1+t²)给出的y是关于t的隐函数,可以不管这些,直接把y看成是t的函数,然后两边求导,得2dy/dt-(y²+2t

高数题(急)设函数y=y(x)由方程∫(0,x+y)e^(t^2)dt+lim(t趋向于无穷)x(1+2x/t)^t=0

因为lim(n->∞)(1+1/n)^n=e所以lim(t->∞)x(1+2x/t)^t=lim(t->∞)x[(1+2x/t)^(t/2x)]^(2x)=xe^2x所以∫(0,x+y)e^(t^2)

设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+

设x=e^-t y=e^-2t 求dy/dx

x=e^-tdx/dt=-e^-ty=e^-2tdy/dt=-2e^-2tdy/dx=(dy/dt)/(dx/dt)=(-2e^-2t)/(-e^-t)=2e^t/(e^t)²=2/e^t

设y=y(x)由方程组x=3t^2+2t+3,e^ysint-y+1=0所确定,求当t=0时,求y对x的二阶导数

x=3t^2+2t+3方程两边对t求导dx/dt=6t+2e^ysint-y+1=0方程两边对t求导e^y*(dy/dt*sint+cost)-dy/dt=0整理得dy/dt=e^y*cost/(1-

设y=[e^x+e^(-x)]^2,求dy

dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���

设x=3e^-t,y=2e^t,则dy/dx等于多少?

dy/dx=(dy/dt)/(dx/dt)=(2e^t)′/(3e^-t)′=(2e^t)/(-3e^-t)=-2/3e^2t

设曲线x=x(t),y=y(t)由方程组x=te^t e^t+e^y=2e 确定,求该曲线在t=1处的曲率k.答案是k=

汗,参数方程的曲率啊,直接代公式就可以了再问:是的不假,但是我怎么算的都是答案的3背呢,多个常数倍数3……我就绕进去出不来了…………再答:也许是答案错误了。再问:………………汗…………因为之前有过类似

y=2e的2x次方 和设x=te的t次方,y=t的平方e的t次方,求dy/dx和d的平方y/dx的平方

y=2e^2xy'=2e^2x*(2x)'=4*e^2xdy/dt=2t*e^t+t²e^t=(t²+2t)*e^td²y/dt²=(2t+2)e^t+(t&s

高数题设x=(t+1)e^t,y=t^2*e^t,求d^2y/dx^2

参数方程求导:d^2y/dx^2=d[dy/dx]/dx=d[(dy/dt)/(dx/dt)]/dx=d[y'/x']/dt*dt/dx=(y''x'-y'x'')/x'^2*1/x'=(y''x'-

设函数y=y(x)由x=1-e^t和y=t+e^-t确定,求dy/dx和d^2y/dx^2

dx/dt=-e^tdy/dt=1-e^-tdy/dx=(dy/dt)/(dx/dt)=[e^(-t)-1]/e^td(dy/dt)/dt=-e^(-t)*e^t-e^t*[e^(-t)-1]/e^2

设由∫(0,y)e^(2t)dt-∫(0,x)arcsintdt=xy 确定了隐函数y=y(x)则 dy/dx=

两边求导得e^(2y)-arcsinx=y+xy'解出来y'就可以了再问:为什么是e^(2y)而不是e^(y^2)?再答:因为你的被积分函数是e^(2t),不是e^(t^2)

设y=y(x)为可导函数,且满足y(x)e^x-y(t)e^tdt=x+1,试求y(x)

y'e^x+ye^x-ye^x=1y'e^x=1y'=e^(-x)y=-e^(-x)+c又x=0时y(0)-0=0+1y(0)=1所以1=-1+cc=2即解y(x)=-e^(-x)+2

设y=e^(x/2)+x^2*sin√x,求y′

y=e^(x/2)+x^2*sin√xy′=1/2*e^(x/2)+2x*sin√x+x^2*1/(2√x)*cos√x

设y=x^2*e^sinx,求dy.

解y'=dy/dx=(x²e^sinx)'=2xe^sinx+x²e^sinx(sinx)'=2xe^sinx+cosx*x²e^sinx∴dy=(2xe^sinx+x&