设z=根号x^2 y^2及z=1所围成的整个边界曲面,则x^2 y^2ds=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 12:56:42
设z=根号x^2 y^2及z=1所围成的整个边界曲面,则x^2 y^2ds=
2(根号x+根号(y-1)+根号(z-2))=x+y=z,求xyz的值

2(√x+√(y-1)+√(z-2)=x+y=zy+x-2√x-2√(y-1)-2√(z-2)=0(x-2√x+1)+[(y-1)-2√(y-1)+1]-2√(z-2)-1=0(√x-1)^2+[√(

根号x+根号y-1+根号z-2=1/2(x+y+z),求x,y,z的值

√x+√(y-1)+√(z-2)=1/2(x+y+z)变形后得[x-2√x+1]+[(y-1)-2√(y-1)+1]+[(z-2)-2√(z-2)+1=0即(√x-1)^2+[√(y-1)+1]^2+

设x,y,z是非零实数,且x^2+4y^2+z^2-3xy=2z根号(xy),则x+y+z/2z-x的值等于?

算数平方根有意义,xy同号.x²+4y²+z²-3xy=2z√(xy)x²+4y²+z²-2z√(xy)-3xy=0x²-4xy+

已知2x(根号x+根号下y-1+根号下z-2)=x+y+z

设根号x=a根号下y-1=b根号下z-2=cx=a^2y=b^2+1z=c^2+22a+2b+2c=a^2+b^2+c^2+3(a-1)^2+(b-1)^2+(c-1)^=0a=1b=1c=1x=1y

设函数z=z(x,y)由方程x^2+y^3-xyz^1=0确定,求z/x,z/y

x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y

设 x+2y+z-2根号下xyz=0 求∂z/∂x ,∂z/∂y

∂z/∂x把y看成常数所以1+0+∂z/∂x-2/[2√(xyz)]*y*(1*z+x*∂z/∂x)=01+∂z/&

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

设e²-x+y+2=0,确定z是x,y函数,求∂z/∂x及∂z/ͦ

是e的z次方原式化作e²=x-y-2两边取对数Z=ln(x-y-2)∂z/∂x=1/(x-y-2)∂z/∂y=-1/(x-y-2)再问:是z次

1.已知x,y,z满足2│x-y│+(根号2y-z)+z平方-z+(1/4)=0,求x,y,z值.

1.z²-z+1/4=(z-1/2)².绝对值、根号、平方数都是非负的,而相加为0.所以都为0.即x=y,2y=z,z=1/2.所以x=y=1/4,z=1/2.2.2002x200

二次根式问题4已知2(根号X+根号Y—1+根号Z—2)=X+Y+Z,求X、Y、Z的值.

原题即:2[√x+√(y-1)+√(z-2)]=(x+y+z)2√x+2√(y-1)+2√(z-2)=x+y+z移项,得x+y+z-2√x-2√(y-1)-2√(z-2)=0(x-2√x+1)+[(y

2(根号下x+根号下y-1+根号下z-2)=x+y+z,求x,y,z的值

经配方得(根号下x-1)²+(根号下y-1-1)²+(根号下z-2-1)²=0∴x=y-1=z-2=0∴x=0,y=1,z=2

如果,根号x-3+| y-2 |+z^2=2z-1 求 (x+z)^y

根号x-3+|y-2|+z^2=2z-1根号x-3+|y-2|+(z^2-2z+1)=0根号x-3+|y-2|+(z-1)^2=0由于数值开根号,绝对值和平方数均为大于等于0的数则上式要成立只有X-3

设函数z=z(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求证z对x的偏导加上z对y的偏导等于1

公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.

设x+y^2+z=ln根号(x+y^2+z),求аz/аx (x+y^2+z)在根号下,

两边取e的指数:e^(x+y²+z)=(x+y²+z)/2对x求导:[e^(x+y²+z)]*(1+ðz/ðx)=(1+ðz/ðx

设x+y^2+z=ln(x+y^2+z)^1/2,求dz/dx

应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+

设复数z=a+i,绝对值z等于根号2,求复数z,和z+1分之z格玛

a=1;z=1+iz+1/z=1+1/z=1+1/1-z=1+z/2+1=3/2+1/2z再问:可以明白一点不〜谢了!

设x,y,z属于【0,1】,则M=根号下|x-y|+根号下|y-z|+根号下|z-x|的最大值是

若x,y,z∈[0,1],不妨设0≤x≤y≤z≤1,均值定理[√|x-y|+√|y-z|+√|z-x|]/3≤√[(|x-y|+|y-z|+|z-x|)/3]=√[(y-x+z-y+z-x)/3]=√

实数x,y,z满足x=y+根号2,2xy+2*根号2*z*z+1=0,则x+y+z等于多少

把x=y+根号2代入得2y^2+2根号2y+2根号2*z^2+1=02[y+(根号2)/2]^2+2根号2*Z^2=0∴y+(根号2)/2=02根号2*z^2=0∴y=-(根号2)/2z=0x=(根号