设Z=yf(x^2-y^2),其中f为可微函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:57:57
设Z=yf(x^2-y^2),其中f为可微函数
z=yf(xy,2x+y),f有二阶连续偏导数,求аz/аx,аz/аy,аz/аxаy

dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y

设函数z=yf(x/y)+xg(y/x),求 X×(z的x的二阶偏导)+Y×(z的x,y的混合偏导)

z对x的一阶偏导:yf′(x/y)·1/y+g(y/x)+xg′(y/x)·(-y/x^2)=f′(x/y)+g(y/x)-(y/x)·g′(y/x)z对x的二阶偏导:f′′(x/y)/y-(y/x^

设X+Y+Z=0求X^3+X^2Z-XYZ+Y^2Z+Y^3的值

因为:X+Y+Z=0得:Z+Y=-X------(1)X+Y=-Z------------(2)Z+Y=-X------------(3)X^3+X^2Z-XYZ+Y^2Z+Y^3=X^3+XZ(X+

设z=z(x,y)是方程x^2+z^2=ysin(z/x)确定的隐函数,求Z对x,y的偏导数

1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求

设z=xf(y/x)+2yf(x/y),f具有二阶连续导数且δ²z/δxδy|x=a值为-by²,a

过程有点多我就说下大概的步骤吧1.求完偏导后方程两边同时对Y积分,得-y/a*f'(y/a)+f(y/a)+2f'(a/y)=-y^3/a^3+c2.令y/a=x,上式两边同时除以-x^2后对X积分,

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

16.设x+y+z=3y=2z ,求x/(x+y+z)的值5.7

z=3y/2把:z=3y/2代入x+y+z=3y得:x+y+3y/2=3y整理后得:x=y/2所以:x/(x+y+z)=(y/2)/(y/2+y+3y/2)=1/6不好意思上次算的时候没注意少了y除2

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

高等数学高数多元函数微分学:设z=z(x,y)是由方程 x^2+y^2+z^2=yf(z/y)所决定的隐函数,f具有连续

这个你得把题目拍上来.不然不好做.要凑.主要是你证明的那句话不好看懂

设Ω={(x,y,z)|x^2+y^2+z^2

建议将球体移到原点位置,这样好做些.用柱面坐标也可以,但基本过程复杂不太推荐,不过,随你喜欢~第一个积分的化简步骤直接跳过了,你不明白的话可以追问,

设由方程x-z-yf(z)=0所确定的隐函数g(x,y),其中f可导,求dz/dx dz/dy

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设x+y^2+z=ln(x+y^2+z)^1/2,求dz/dx

应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+

设由方程x+2y+z=e^(x-y-z)确定的隐函数为z=z(x,y),求d^2z/dx^2

x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).

设f(x,y,z)可微,对一切t不等于0,有f(tx,ty,tz)=tf(x,y,z),试证:xf'(x)+yf'(y)

这个叫欧拉公式(顺便说一下,你那个式子右边的t应该是少了个n次方),证明可以两边对t求偏导再令t=1得到,只要你会基本的微积分的话……

设z=z(x,y)是由方程x=zf(y/x)确定的隐函数,其中f(u)具有连续的导数,且x-yf'(y/...

因为(偏导z/偏导x)=(1+z(x,y)*f‘(y/x)*y/x^2)/f(y/x)(偏导z/偏导y)=-(z(x,y)*f‘(y/x))/(x*f(y/x))所以x(偏导z/偏导x)+y(偏导z/

设x+z=yf(x²-z²),其中f具有连续导数,求z(∂z/∂x)+y(&

x+z=yf(x²-z²)1+∂z/∂x=yf’(x²-z²)(2x-2z(∂z/∂x))∂z/&#

设Z=X+Y,其中X,Y满足X+2Y>=0,X-Y

(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3