设z=x∧yδ²z δx²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:55:17
设z=x∧yδ²z δx²
(x+y-z)(x-y+z)=

[x+(z-y)][x-(z-y)]=x-(z-y)记得采纳啊

设z(x,y)是方程F(x-y,y-z,z-x)=0所确定,其中F为可微函数,则δz/δx+δz/δy=?

令u=x-y,v=y-z,w=z-x,则F(u,v,w)=0,方程两边对x求偏导,其中z看做x,y的函数,则ðF/ðu*ðu/ðx+ðF/ð

设Z=y/f(x^2-y^2),其中f(u)为可导函数,验证1/X乘δz/δx + 1/y乘δz/δy =z/y^2

这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy

设X+Y+Z=0求X^3+X^2Z-XYZ+Y^2Z+Y^3的值

因为:X+Y+Z=0得:Z+Y=-X------(1)X+Y=-Z------------(2)Z+Y=-X------------(3)X^3+X^2Z-XYZ+Y^2Z+Y^3=X^3+XZ(X+

设z=z(x,y)是方程x^2+z^2=ysin(z/x)确定的隐函数,求Z对x,y的偏导数

1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求

设z=z(x,y)由方程x/z=ln(y/z)所确定的隐函数 求∂z/∂y,∂z/&

x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

微积分证明题求解设函数Z=LN(X^2 Y^2),求证yδz/δx-xδz/δy=0

δz=2xδx/(x^2*y^2)+2yδy/(x^2*y^2)代入求证的式子左边就知道了,等于0

16.设x+y+z=3y=2z ,求x/(x+y+z)的值5.7

z=3y/2把:z=3y/2代入x+y+z=3y得:x+y+3y/2=3y整理后得:x=y/2所以:x/(x+y+z)=(y/2)/(y/2+y+3y/2)=1/6不好意思上次算的时候没注意少了y除2

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

◆高数 多元函数微分学 证明 "设x = x(y, z),y = y(x, z),z = z(x, y)都是由方程F(x

再问:是否还能给出一种利用题目所给的条件(关于x,y,z的函数)去证明的方法吗?再答:这就是课本上隐函数求导公式的应用,你想得太多了,没有必要的!

设X,Y,Z都是整数,满足条件(X-Y)(Y-Z)(Z-X)=X+Y+Z,试证明X+Y+Z能被27整除

这样来说明,按3分类,一个数被3除只可能余0,1,2三种情况,如果,xyz这三个数同余,那么x-y,y-z,x-z都是3的倍数,则乘积就是27的倍数,即x+y+z是27的倍数成立除此外,还有两种可能,

设x.y.z满足3x=4y=6z(x.y.z都是指数)求证

(1)证明:设3^x=4^y=6^z=k则x=log3'k,y=log4'k,z=log6'k1/z-1/x=1/(log6'k)-1/(log3'k)...(2)3^(1/3)=1.44224^(1

设z=ln(x^z×y^x),求dz

z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz

设由方程x+2y+z=e^(x-y-z)确定的隐函数为z=z(x,y),求d^2z/dx^2

x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).

1.设X ,Y,Z 成等差数列,代数式(X-Z)*(X-Z)+ 4(X-Y)(Z-Y)=

1.设X,Y,Z成等差数列,代数式(X-Z)*(X-Z)+4(X-Y)(Z-Y)=(-2d)^2-4d*d=02.设数列{An}的通项公式为An=4n+3求证:{An}为等差数列.An=4n+3An+