设z=xln(xy),求偏导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:01:39
第一个:z=x^xy=e^[ln(x^xy)]=e^(xylnx)令u=xy*lnx,则z=e^u∂z/∂x=(x^u)'•u'=(e^u)•(xyln
Z=f'x(x,y)=xy*[x^(xy-1)]*yZ=f'y(x,y)=xy*[x^(xy-1)]*x再问:答案是Z=f'x(x,y)=yx^xy(lnx+1),Z=f'y(x,y)=x^(xy+1
z=xy+x/y对x的偏导数=y+1/y对y的偏导数=x-x/y^2
z'x=(-y/x^2)/(y/x)=-1/xz'y=(1/x)/(y/x)=1/ydz=z'xdx+z'ydyu=ln(x^2+y^2+z^2)u'x=2x/(x^2+y^2+z^2)u'y=2y/
根据一阶全微分形式不变得dz=d(xf(x^y,e^xy)=f(x^y,e^xy)dx+xd(f(x^y,e^xy))=f(x^y,e^xy)dx+x[f1'd(x^y)+f2'(de^xy)]=f(
令u=x^2+y^2,v=xy得∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂
先求一阶导数,由于f有两个分量,要先对f的两个分量求导,再根据复合函数求导,两个分量对x求导,也就是z对x的一阶导数是:f1*y-f2*y/x^2,接下来再让这个式子对x求导,注意,这里利用乘法的导数
设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1
z=(1+xy)^y=e^[(ln(1+xy))*y]取对数:lnz=y*ln(1+xy)求全微分:dz/z=(1/(1+xy))y*ydx+ln(1+xy)dy+(xy/(1+xy))dy=(1/(
设u=xy,v=y/x,则z=x³f(u,v),au/ax=y,av/ax=-y/x²故az/ax=3x²f(u,v)+x³f'u(u,v)(au/ax)+x&
传了张图片,不怎么清楚,凑合一下思路就是按照多元复合函数求导来一步一步求解.有问题再追问.先打这么多了. 答案是a^2z/axay=y*f ''(xy)+g'
点击放大,右键查看图片可以进一步放大:
令u=xy,则z对x的偏导就变为(dz/du)*(偏u/偏x),然后按这样的顺序算就行了,同理,对y也一样,不知道这样说你明不明白
确定z=(1+xy)^(x+y)!后面有个阶乘符号吗?阶乘不是连续函数,是不可导的如果忽略阶乘符号z=(1+xy)^(x+y)lnz=(x+y)*ln|1+xy|(∂z/∂x)
z=(x^2)*ln(2xy),Zx=(2x)ln(2xy)+(x^2)/2xy*(2xy)'=(2x)ln(2xy)+xZxx=2ln(2xy)+(2x)/2xy*(2xy)'+1=2ln(2xy)
令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)
z=y+cosx+x再问:偏导数,不是导数再答:这不就是偏导数吗再问:哦,有全过程吗,谢谢再答:ðz/ðx=y+cosxðz/ðy=x
那个符号用a表示了哈(1)az/ax=y^2+3x^2yaz/ay=2xy+x^3a^2z/ax^2=6xya^2z/(axay)=a^2z/(ayax)=2y+3x^2a^2/ay^2=2x(2)a
二阶偏导数有四个Z''xx=(lin(x+y)+x/(x+y))'=1/(x+y)+y/(x+y)^2Z''yy=(x/(x+y))'=-x/(x+y)^2Z''yx=Z''xy=(x/(x+y))'