设z=2u^2 v^2,求Dz Dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:00:48
设z=2u^2 v^2,求Dz Dx
设z=u^2v^2,而u=x-y,v=x+y,求dz/dx,dz/dy

由z=u²v²,其中u=x-y,v=x+y,题型:求复合函数的偏导数:z=(x-y)²(x+y)²,dz/dx=(x-y)²×2(x+y)+2(x-y

设函数z=f(u,v)具有二阶连续偏导数,z=f(x-y,y/x),求a^2z/axay

令u=x-y,v=y/xaz/ax=az/au×au/ax+az/av×av/ax=fu-y/x^2×fva^2z/axay=a(az/ax)/ay=a(fu-y/x^2×fv)/ay=a(fu)/a

设Z是虚数,W=Z+Z分之一是实数,-1小于W小于2,(1)求|Z|及Pez的取值范围(2)设U=1+Z分之1—Z,求证

1.Z=a+bi1/z=a/(a^2+b^2)-b/(a^2+b^2)iZ+Z分之一是实数,b-b/(a^2=b^2)=0a^2+b^2=1|Z|=√(a^2+b^2)=1-1

已知|z|=1,设复数u=z^2-2,求|u|的最大值和最小值.

解:假设z=a+bi则u=(a^2-b^2-2)+2abi因为|z|=1,则a^2+b^2=1(数形结合分析可以知道-1

设x+y+z=11求函数u=2x*x+3y*y+z*z的最小值

由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+

设x=u.e^u,u^2+v^2=1,求dv/dx;求详解

x=ue^u两边微分:dx=e^udu+ue^udu=[(1+u)e^u]dudu/dx=1/[(1+u)e^u]u^2+v^2=1两边微分:2udu+2vdv=0dv/du=-u/vdv/dx=(d

设z=u^2cosv^2,u=x+y,v=xy,求dz/dx,dz/dy.

z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y

z=f(u,v)=u^2-v^2,u=x+y,v=xy.求z对x的偏导.

z=f(x,u),u=xy,求z对x的二阶偏导数∂z/∂x=∂f/∂x+(∂f/∂u)(∂u/∂x)=&

已知u-v=x^2-y^2,试求解析函数f(z)=u+iv

怎么是u-v啊?觉得应该是实部虚部是两个式子吧验证两者满足二维拉普拉斯方程后用柯西黎曼方程,然后求积分吧u-v的话我也看不懂…

求复合函数的偏导数 设Z=u^2 lnv ,u=y/x,v=x^2+y^2,求 az/ax ,az/ay

az/ax=az/au+au/ax=2ulnv-y/x^2az/ay=az/av+av/ay=u^2/v+2y然后再稍微化简一下就行啦!再问:怎么简化啊。。。。我完全不会啊。。。再答:这里的u跟v应该

设u=ln√(x^2+y^2+z^2) 求du

ux=2x/(x^2+y^2+z^2)uy=2y/(x^2+y^2+z^2)uz=2z/(x^2+y^2+z^2)故du=uxdx+uydy+uzdz=2x/(x^2+y^2+z^2)dx+2y/(x

设ψ(cx-az,cy-bz)=0,其中ψ(u,v)具有连续偏导数,求a*(α^2z/αxαy)+b*(αz/αy)

不好意思,不知道是本人耐心不够,没有简化出简洁结果,还是本题的原因,只能大致给出解题过程如下,点击放大,荧屏放大再放大:

求多元复合函数设Z=u^2+v^2+uv,u=cost,v=t^3,求dz/dt?

其实就是求z的导数,cost^2求导为2cost*(-sint),t^6求导是6t^5,cost*t^3求导是-sint*t^3+cost*3*t^2,综合起来就是2cost*(-sint)+6t^5

设z=u^2+v^2,且u=x+y,v=x-y,求dz/dx,dz/dy

2(x+y),2(x-y).下次弄个难点的

设二元函数 z=u^2,u=x+y v=x-y ,求dz/dx,dz/dy

dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系

求函数偏导设z=u^2v-uv^2,而u=xsiny,v=xcosy,求偏z/偏x和偏z/偏y

①偏z/偏x=偏z/偏u偏u/偏x+偏z/偏v偏v/偏x=(2uv-v^2)siny+(2uv-v^2)cosy=(2x^2sinycosy-x^2(cosy)^2)siny+(2x^2sinycos

设函数u=In(x^2+y^2+z^2),求du.

这个是多个参数的全微分的求法du=(2xdx+2ydy+2zdz)/(x^2+y^2+z^2)

设z=ln(u平方+v),u=x-y平方,v=x平方y,求 偏导z/x 偏导 z/y?

∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z

设u=xz,其中Z=Z(x,y)是由方程x平方z+2y平方z平方+y=0确定,求du/dx

首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d

已知复数Z满足|Z|=1,u=1+Z^2,求|u|的最大值

设z=cosA+isinAu=1+(cosA+isinA)²=1+cos²A-sin²A+i*2sinAcosA=(1+cos2A)+isin2A|u|²=(1