设y=ln(arctan(1-2)),求dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:11:34
设y=ln(arctan(1-2)),求dy
设y=ln(1+x),求y^(n)

y=ln(1+x)y′=1/(1+x)y′′=-1/(1+x)²y′′′=(-1)(-2)[1/(1+x)³].y^n=(-1)(-2)...(-n+1)[1/(1+x)^n]

已知函数y(x)由方程arctan y/x=1/2ln(x^2+ y^2)确定,求dy.

两边对【x】求导,注意,y是x的函数,利用复合函数求导1/[1+(y/x)^2]×(y/x)'=1/2×1/(x^2+y^2)×(x^2+y^2)',也就是:x^2/(x^2+y^2)×(xy'-y)

设y=ln ln ln x,求y’

y'=(lnlnx)'/lnlnx=(lnx)'/lnxlnlnx=1/xlnxlnlnx

设函数y=ln(1+sin2x)求二阶导数y".

点击放大,有详细过程.

arctan(y)=x+1, y=?

两边取正切y=tan(x+1)

设y=arctan根号(x^2-1)-lnx/根号(x^2-1)求dy

symsx;y=atan((x^2-1)^(1/2))-log(x)/((x^2-1)^(1/2))y=atan((x^2-1)^(1/2))-log(x)/(x^2-1)^(1/2)>>diff(y

设y=ln 1/x +ln2 求y'

两种方法:1.求ln1/x的导数时,结果是1/(1/x)=x,因为是复合函数,此时还要乘以1/x的导数,即-1/x^2,最后结果是-1/x,ln2是常数,导数是0所以y'=-1/x;2.如果你上面的方

arctan(y/x)=(ln(X^2+Y^2))/2 求y的导数

再问:л�˰�再问:��

设函数y=ln(1+x),则y''=?

y=ln(1+x)y'=1/(1+x)y''=-1/(1+x)²熟记求导公式

设y=arctan(a/x)+1/2[ln(x-a)-ln(x+a)],求dy|x=0

y=arctan(a/x)+1/2[ln(x-a)-ln(x+a)],利用复合函数求导的链锁规则,有y'=1/(1+(a/x)^2)*(-a/x^2)+1/2[1/(x-a)]-1/(x+a)]=-a

设ln(x^2+y^2)=arctan(y/x),则dy/dx=

两边同时对x求导,得(2x+2yy')/(x²+y²)=1/(1+y²/x²)·(xy'-y)/x²(2x+2yy')/(x²+y²

ln(x^2+y^2)^1/2=arctan(x/y)的导数,

两边同时求导根据链式法则1/2(x²+y²)’/(x²+y²)=(x/y)'/[1+(x/y)²]1/2(2x+2yy')/(x²+y

高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy

y=2^arccot(x)-sin3y'=2^arccotx*[-1/(1+x²)]*ln2dy=2^arccotx*[-1/(1+x²)]*ln2dx

对函数y=ln[cos(arctan(sinx))]求导

y=f{g[h(p(x))]}y'=f'(g)g'(h)h'(p)p'(x)y'=1/cos(arctan(sinx))*(-sin(arctan(sinx))*cosx/(1+sinx^2)=-ta

0.5ln(x2+y2)=arctan(y/x),(x≠0,x≠y),求y’.

对x求导0.5*1/(x²+y²)*(x²+y²)'=1/[1+(y/x)²]*(y/x)'0.5/(x²+y²)*(2x+2y*

设 y=4 arctan x ,则y'(1)=?

y=4arctanxy'=4/(1+x^2)所以y'(1)=4/(1+1^2)=2