设y=f(x)由方程y^2f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:10:22
两边对x求导:2cos(x^2+y)*(-sin(x^2+y))*(2x+y')=1所以y'=-1/sin(2x^2+2y)-2x再问:求f'(x)```再答:y'就是f'(x)啊。。。。。
两边都对x求导有(2x+dy/dx)/(xˆ2+y)=3xˆ2y+xˆ3dy/dx+cosx得dy/dx=(3xˆ4y+3xˆ2yˆ2+x&
两边对x求导有y'e^y=y+xy'整理解得y‘=dy/dx=x/(e^y-x)
两边对x求导:2yy'f(x)+y^2f'(x)+f(y)+xy'f(y)=2x则y'=[2x-f(y)-y^2f'(x)]/[2yf(x)+xf(y)]再问:给的那个f(x)是x可微函数什么意思再答
你让我情何以堪,微积分没学会遇到偏导数和隐函数的题?对方程两边取对数,化简后成了lnx+f(y)=y然后求导(这里其实用了偏导和隐函数求导.)y‘=1/x+f’(y)再问:隐函数刚学就有这题了,谢了能
这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos
两边对x求导:y'e^y+(1+y')cos(x+y)=0,1)这里可得到y'=-cos(x+y)/[e^y+cos(x+y)]再对1)求导:y"e^y+(y')^2e^y+y"cos(x+y)-(1
xy+y^2-2x=0y+xy'+2yy'-2=0(x+2y)y'=2-yy'=(2-y)/(x+2y)dy/dx=(2-y)/(x+2y)
设fi为f对第i个变量的偏导,i=1,2,3dz-f1(2x,x+y,yz)*2dx-f2(2x,x+y,yz)(dx+dy)-f3(2x,x+y,yz)*(ydz+zdy)=0==>dz=((2f1
两端对x求导数(把y看作x的函数),则1-y'=e^(xy)*(1*y+x*y')y'[xe^(xy)+1]=1-ye^(xy)dy/dx=y'=[1-ye^(xy)]/[xe^(xy)+1]
Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)
两边求微分:d(x^y+y^x)=d(f(x^2+y^2))对x^y可以这么看:先把X看成常数,对Y求微分相当于a^Y,再把Y看成常数对X求微分相当于X^a.那么就好用公式了如下:d(x^y)=X^Y
两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(
xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)
y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得
两边对x求导xy^2+sinx=e^yy^2+2xyy'+cosx=e^y*y'y'(e^y-2xy)=y^2+cosxy'=(y^2+cosx)/(e^y-2xy)
F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]
两边对x求导:1+y'=y'e^y得dy/dx=y'=1/(e^y-1)