设y=f(x)由方程y^2f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:10:22
设y=f(x)由方程y^2f(x)
设y=f(x)是由方程cos^2(x^2+y)=x所确定的方程 求f'(x)

两边对x求导:2cos(x^2+y)*(-sin(x^2+y))*(2x+y')=1所以y'=-1/sin(2x^2+2y)-2x再问:求f'(x)```再答:y'就是f'(x)啊。。。。。

设函数y=f(x)由方程ln(x^2+y)=x^3 y+sinx确定,求dy/dx (x=0)

两边都对x求导有(2x+dy/dx)/(xˆ2+y)=3xˆ2y+xˆ3dy/dx+cosx得dy/dx=(3xˆ4y+3xˆ2yˆ2+x&

设y=f(x) 由方程e^y=xy确定,则dy/dx=?

两边对x求导有y'e^y=y+xy'整理解得y‘=dy/dx=x/(e^y-x)

设y=y(x)是由方程y^2f(x)+xf(y)=x^2确定,其中f(x)是x的可微函数,试求dy/dx.

两边对x求导:2yy'f(x)+y^2f'(x)+f(y)+xy'f(y)=2x则y'=[2x-f(y)-y^2f'(x)]/[2yf(x)+xf(y)]再问:给的那个f(x)是x可微函数什么意思再答

设y=y(x)由方程xe^f(y)=e^y确定,f(u)可导且f′≠1,求dy/dx

你让我情何以堪,微积分没学会遇到偏导数和隐函数的题?对方程两边取对数,化简后成了lnx+f(y)=y然后求导(这里其实用了偏导和隐函数求导.)y‘=1/x+f’(y)再问:隐函数刚学就有这题了,谢了能

设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dy\dx

这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos

设函数y=f(x)由方程e∧y+sin(x+y)=1决定,求二阶导数

两边对x求导:y'e^y+(1+y')cos(x+y)=0,1)这里可得到y'=-cos(x+y)/[e^y+cos(x+y)]再对1)求导:y"e^y+(y')^2e^y+y"cos(x+y)-(1

设函数Y=f(x)由方程xy+y^2-2x=0,则dy/dx=?

xy+y^2-2x=0y+xy'+2yy'-2=0(x+2y)y'=2-yy'=(2-y)/(x+2y)dy/dx=(2-y)/(x+2y)

设函数z(x,y)由方程z-f(2x,x+y,yz)=0确定,其中f具有连续的偏导数,求dz

设fi为f对第i个变量的偏导,i=1,2,3dz-f1(2x,x+y,yz)*2dx-f2(2x,x+y,yz)(dx+dy)-f3(2x,x+y,yz)*(ydz+zdy)=0==>dz=((2f1

设由方程X-Y=e^(xy) 确定由函数Y=f(x),则dy/dx=?

两端对x求导数(把y看作x的函数),则1-y'=e^(xy)*(1*y+x*y')y'[xe^(xy)+1]=1-ye^(xy)dy/dx=y'=[1-ye^(xy)]/[xe^(xy)+1]

设函数y=f(x)由方程sin y+e^x-xy^2=0确定,求d y/d x

Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)

设f(u)可导,函数y=y(x)由x^y+y^x=f(x^2+y^2)所确定,则dy=

两边求微分:d(x^y+y^x)=d(f(x^2+y^2))对x^y可以这么看:先把X看成常数,对Y求微分相当于a^Y,再把Y看成常数对X求微分相当于X^a.那么就好用公式了如下:d(x^y)=X^Y

设函数y=y(x)由方程y^2 f(x)+xf(x)=x^2确定,其中f(x)为可微函数,求dy.

两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(

设y=y(x)由方程xe^f(u)=e^y确定,其中f的二阶可导,且f'≠1求d^2(y)/dx^2

xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)

设函数y=f(x)由方程y=xe^y确定,求dy/dx 为什么 y'=e^y+xe^y*y'

y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得

函数y=f(x)由方程xy^2+sinx=e^y,求y′

两边对x求导xy^2+sinx=e^yy^2+2xyy'+cosx=e^y*y'y'(e^y-2xy)=y^2+cosxy'=(y^2+cosx)/(e^y-2xy)

设Y=F(x)是由函数方程ln(x+2y)=x^2+y^2所确定的隐函数,求Y

F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]

设函数y=f(x)由方程x+y=e^y确定,求dy/dx

两边对x求导:1+y'=y'e^y得dy/dx=y'=1/(e^y-1)