设y=arctan(tan(x 2)),求dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:13:50
设y=arctan(tan(x 2)),求dy
设方程x-y+arctan y=0确定了y=y(x),求dy/dx.

x=y-arctany两边同取微分dx=d(y-arctany)dx=[1-1/(1+y^2)]dy移项得dy/dx=1/[1-1/(1+y^2)]然后自己再化简化简就行了.

arctan(y)=x+1, y=?

两边取正切y=tan(x+1)

设二维随机变量(x,y)的联合分布函数为 F(x,y)=a(b+arctan(x/2))(c+arctan(y/3))

给你个思路吧,这个不好打1)由F(无穷,无穷)=1,F(负无穷,负无穷)=0,F(负无穷,y)=0,F(x,负无穷)=0,可以解出abc2)对F(x,y)求x,y的混合偏导数,得出的结果就是f(x,y

设y=arctan根号(x^2-1)-lnx/根号(x^2-1)求dy

symsx;y=atan((x^2-1)^(1/2))-log(x)/((x^2-1)^(1/2))y=atan((x^2-1)^(1/2))-log(x)/(x^2-1)^(1/2)>>diff(y

设y=In(sec X+tan X ),求y'

=(secX+tanX)'/(secX+tanX)=(secxtanx+sec²x)/(secX+tanX)=secx(tanx+secx)/(secX+tanX)=secx

设y=arctan(a/x)+1/2[ln(x-a)-ln(x+a)],求dy|x=0

y=arctan(a/x)+1/2[ln(x-a)-ln(x+a)],利用复合函数求导的链锁规则,有y'=1/(1+(a/x)^2)*(-a/x^2)+1/2[1/(x-a)]-1/(x+a)]=-a

设ln(x^2+y^2)=arctan(y/x),则dy/dx=

两边同时对x求导,得(2x+2yy')/(x²+y²)=1/(1+y²/x²)·(xy'-y)/x²(2x+2yy')/(x²+y²

设z=arctan(xy),y=e的x次方,求dz/dx

z=arctan(x*e^x)z'={1/[1+(x*e^x)^2]}*(x*e^x)'(x*e^x)'=x'*e^x+x*(e^x)'=e^x+x*e^x=(x+1)*e^x所以dz/dx=(x+1

y=2x*arctan(y/x),求y‘’

即y/x=2arctan(y/x)令u=y/x,则u=2arctanu这实际是一个关于u的方程,可以证明这个方程是有解的,设u=c是方程的解(这时c已经是一个常数了)即u=y/x=c那么有y=cx所以

y=arctan(1/x)求导

y'=1/[1+(1/x)^2]*(1/x)'=x^2/(1+x^2)*(-1/x^2)=-1/(1+x^2)

高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy

y=2^arccot(x)-sin3y'=2^arccotx*[-1/(1+x²)]*ln2dy=2^arccotx*[-1/(1+x²)]*ln2dx

arctan(x,arctan(x,y)是不是等于arctan(x/y)?

差不多,但是有小区别.arctan(x/y)的范围是(-π/2,π/2)而arctan(x,y)的范围是(-π,π]http://www.cplusplus.com/reference/clibrar

设函数y=arctan(1+x^2),求dy/dx.

dy/dx=[arctan(1+x^2)]'*(1+x^2)'=1/[1+(1+x^2)^2]*2x话说,我刚回答了一道一样的.再问:下面一行就是最终过程了??不好意思,因为我是数学白痴再答:嗯。。导

设 y=4 arctan x ,则y'(1)=?

y=4arctanxy'=4/(1+x^2)所以y'(1)=4/(1+1^2)=2

y=arctan(x^2+1)

y'=1/[1+(x^2+1)^2]×(x^2+1)'=2x/(x^4+2x^2+2)再问:

设y=1/a arctan x/a ,则 dy/dx

这不就是求导数吗dy/dx=(1/a)*(1/(1+x^2)*(1/a)=1/[a^2*(1+x^2)]

tan(arctan x + arctan p)=?

tan(arctanx+arctanp)=[tanarctanx+tanarctanp]/[1-(tanarctanx)(tanarctanp)]=(x+p)/(1-xp)这就是公式.

联合概率密度函数设随机向量(X,Y)的分布函数为F(x,y)=A(B+arctan x/2)(C+arctan y/3)

F(-∞,y)=A*(B-π/2)(C+arctany/3)=0,B=π/2F(x,-∞)=A*(B+arctanx/2)(C-π/2)=0,C=π/2F(+∞,+∞)=A(B+π/2)(C+π/2)