设y1,y2是三阶实对称矩阵的两个不同的特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:51:34
设y1,y2是三阶实对称矩阵的两个不同的特征值
高数微分方程问题:设y1,y2,y3是微分方程y''+p(x)y'+q(x)y=f(x)的三个不同的解,且(y1-y2)

非齐次方程的任意两个解的差都是对应的齐次方程的解,这个结论很明显呀(两个解代入非齐次方程,相减,右边不就是f(x)-f(x)=0嘛).齐次方程有三个解y1-y2,y2-y3,y3-y1,任意两个都线性

设A是反对称矩阵,B是对称矩阵,证明A的平方是对称矩阵;AB-BA是对称矩阵

A=-A^t,B^t=BA^2=(-A)^t(-A)^t=(A^2)^t所以A^2为对称矩阵(AB-BA)^t=(AB)^t-(BA)^t=B^tA^t-A^tB^t=B(-A)+AB=AB-BA所以

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

有关于矩阵对称和反对称的证明题 :设A是反对称矩阵,B是对称矩阵.证明:

由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是

直线y1=kx+b与y2=2x+3与y轴的交点相同,直线y1与x轴的交点和直线y2与x轴的交点关于原点对称,求:直线y1

y1与y轴的交点为x=0时,y=b,即(0,b)题目说的y1=kx+b与y2=2x+3与y轴的交点相同即(0,b)与(0,3)相同,∴b=3直线y1与x轴的交点和直线y2与x轴的交点关于原点对称可以知

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设x=a时,二次函数y1有最大值5,二次函数y2的值为25,且y2的最小值为-2,且a>0,y1+y2=x^2+16x+

由题意得:当x=a时y1=5,y2=25y1+y2=x^2+16x+135+25=a^2+16a+13a^2+16a-17=0(a+17)(a-1)=0a>0所以a=-17(舍去),a=1x=a=1时

设一个对称矩阵有可逆矩阵,证明它的逆矩阵也是对称矩阵

证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)

设A+B都是n阶对称矩阵,E+AB可逆,证明(E+AB)^-1A也是对称矩阵.(E+AB)的逆矩阵乘A

证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB=BA

这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.

设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵

由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!

设行矩阵A=(x1,x2,x3)B=(y1,y2,y3)且知道A'B 求 AB'

转置.A'B=x1y1x1y2x1y3x2y1x2y2x3y3x3y1x3y2x3y3AB'=[x1y1+x2y2+x3y3]=[2+(-1)+1]=[2],结果是一个一行一列的矩阵.再问:A'B=x

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

特征向量于特征值设y1,y2是3阶实对称矩阵A的两个特征值,a1=(2,2,3)^T,a2=(3,3,a)^T依次是A的

A为实对称矩阵==>A的不同特征值对应的特征向量正交2*3+2*3+3*a=0==>a=-4

设两点坐标为(x1,y1)(x2,y2) 则两点间的距离公式 d=√[(x1-x2)^2+(y1-y2)^2],这是怎么

用的直角三角形的性质:|x1-x2|为直角边,|y1-y2|为另一直角边,那么斜边d=√[(x1-x2)^2+(y1-y2)^2]再问:那书上的"|p1p2|=|向量p1p2|=∫向量p1p2×向量p

设y1=3y+1/3,y2=4-3y/6,若y1+3y2=-1/6,求y的值

y=-5/3因为y1+3y2=-1/6所以3y+1/3+3(4-3y/6)=-1/6.所以y=-5/3

谁会矩阵的题啊,设A为n阶对称矩阵,B为n阶反对陈矩阵.证明:1、B^2(B的平方)为对称矩阵;2、AB-BA为对称矩阵

1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'