设y1,y2是三阶实对称矩阵的两个不同的特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:51:34
非齐次方程的任意两个解的差都是对应的齐次方程的解,这个结论很明显呀(两个解代入非齐次方程,相减,右边不就是f(x)-f(x)=0嘛).齐次方程有三个解y1-y2,y2-y3,y3-y1,任意两个都线性
A=-A^t,B^t=BA^2=(-A)^t(-A)^t=(A^2)^t所以A^2为对称矩阵(AB-BA)^t=(AB)^t-(BA)^t=B^tA^t-A^tB^t=B(-A)+AB=AB-BA所以
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是
y1与y轴的交点为x=0时,y=b,即(0,b)题目说的y1=kx+b与y2=2x+3与y轴的交点相同即(0,b)与(0,3)相同,∴b=3直线y1与x轴的交点和直线y2与x轴的交点关于原点对称可以知
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
由题意得:当x=a时y1=5,y2=25y1+y2=x^2+16x+135+25=a^2+16a+13a^2+16a-17=0(a+17)(a-1)=0a>0所以a=-17(舍去),a=1x=a=1时
证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)
证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.
由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!
转置.A'B=x1y1x1y2x1y3x2y1x2y2x3y3x3y1x3y2x3y3AB'=[x1y1+x2y2+x3y3]=[2+(-1)+1]=[2],结果是一个一行一列的矩阵.再问:A'B=x
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
A为实对称矩阵==>A的不同特征值对应的特征向量正交2*3+2*3+3*a=0==>a=-4
用的直角三角形的性质:|x1-x2|为直角边,|y1-y2|为另一直角边,那么斜边d=√[(x1-x2)^2+(y1-y2)^2]再问:那书上的"|p1p2|=|向量p1p2|=∫向量p1p2×向量p
y=-5/3因为y1+3y2=-1/6所以3y+1/3+3(4-3y/6)=-1/6.所以y=-5/3
1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'