设x的概率分布为 p q=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:58:18
设x的概率分布为 p q=1
设随机变量(x y)的分布概率为 f(x,y)=3x (0

Z的取值范围01)3xdx∫(x-z-->x)前一积分结果为z^3,后一积分结果为(3/2)z-(3/2)z^3故F(z)=(3/2)z-(1/2)z^3求导即得密度函数f(z)=dF(z)/dz=(

一个概率题 设随机变量X的概率分布为

E(X)=0*0.1+1*0.4+2*0.5=1.4E(X^2)=0^2*0.1+1^2*0.4+2^2*0.5=2.4D(X+2)=D(X)=E(X^2)-E(X)^2=2.4-1.4^2=0.44

设随机变量X的概率分布为P{X=k}=e-1/K!

P(1)E(X)=D(X)=1E(X^2)=2P(X=EX^2)=P(X=2)=1/(2e)如有意见,欢迎讨论,共同学习;如有帮助,

概率统计,设连续型随机变量X的分布函数为F(x)=(详细请见图)

再问:大神,没想到你终于答到我的题目了...私信的话太简略我很多看不懂1)原来如此2)可是上面第三列求导后也没有=2啊?(是2-x,应该是漏了)(⊙o⊙),还有最后一列为什么要消掉“=”号,我有点不太

设随机变量x的概率密度为见图、 F(x)是X的分布函数,求随机变量Y=F(X)的分布函数

分位数变换,均匀分布再问:给定的f(x)怎么用?再答:取c属于(0,1)考虑P(Y

概率 分布函数设随机变量x的分布函数F(x)= 0 ,x

因为实际上在连续型随机变量的中单个点的概率是没有意义的,这一点无论是从连续型随机变量概率的定义还是从计算方法来看都是可以说明问题的(从负无穷到正无穷的概率一共为1,那么单个点的概率就是用1除以一个无穷

设X的概率密度为f(x)={1x1,-1小于等于X小于等于1 0,其他 求 X的分布函数F(X);

F(x)=0,x再问:还是这道题第二问P{x<0.5}P{X>-0.5}再答:p{x-0.5}=1-F(-0.5)=1-[-(-0.5)^2/2+1/2]=5/8再问:能不能告诉我你的电话我7号要考试

设连续随机变量X的分布函数为F(X)=1-e^-3x,x>0 ;0,x0时,X的概率密度.

当x>0f(x)=F'(x)=3e^(-3x)当x00x再问:我想知道的是怎么从F(X)推到f(x)这步的?再答:定义F(x)=P{x

设随机变量X的概率分布密度为f(x)=1/2e^-|x|,x属于R,求X的数学期望和方差.

密度函数关於y轴对称,偶函数,期望肯定是0E(X²)=1/2{∫(~0)x²e^(x)dx+∫(0~)x²e^(-x)dx}=(1/2)2∫(0~)x²e^(-

设离散型随机变量X的概率分布为P.

需要知道随机变量X的取值范围,(一)如果X的取值范围是1,2,3···则由所有情况概率总和为1可知:r*(p+p^2+p^3+```)=r*p/(1-p)=1,则p=1/(1+r)(二)如果X的取值范

设随机变量(X,Y)的概率分布律为如图,求:(1)X的边缘分布律(2)Z=X+Y的分布律

(1)X的边缘分布律X-101P0.20.50.3(2)Z=X+Y的分布律Z-1012P00.40.50.1----------------------------------------------

设随机变量X,Y的概率分布相同,X的概率分布为P(X=0)=1/3,P(X=2)=2/3,且X,Y的相关系数为1/2

先设P(X=2,Y=2)的概率是a,则联合概率表中其它数字可用a表示出来,利用相关系数求出a=5/9,就得出了联合分布.经济数学团队帮你解答,请及时采纳.

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

设x的概率密度为f(x)=Ae^-2|x|,求(1)A的值(2)x分布函数(3)p(-1

(1)A=1利用f(x)在整个定义域里求积分等于1(2)1-e^(-2).同样用f(x)在[-1,1]上积分就可以了.

设随机变量X的概率分布为P(X=k)=k/15,k=1,2,3,4,5.试求:(1)P(X=1

(1)P(X=1或X=2)=P(X=1)+P(X=2)=1/15+2/15=1/5(2)P(1/2<X<5/2)=P(X=1)+P(X=2)=1/15+2/15=1/5(3)P(1≦X≦2)=P(X=

概率题:设连续型随机变量X的分布函数为:0 ,x<0 F(x)= Ax&#

(1)x→1时,F(x)→F(1)=1,即A*1^2=1,所以A=1,F(x)=x^2,0≦x<1时(2)P(0.3<x<0.7)=F(0.7)-F(0.3)=0.7^2-0.3^2=0.4(3)x<