设X的分布律为P(x=n)=P(x=-n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:22:46
设X的分布律为P(x=n)=P(x=-n)
设随机变量X的分布列P(X=k)=λ^k(k=1,2,3,...,n,...),则λ值为(1/2)

再问:为什么等于λ/(1-λ),不会推,谢谢再答:

概率论题目:设X,Y 相互独立,X 和Y 的分布律分别为P(X=0)=0.3,P(X=1)=0.7和P(Y=0)=0.3

选D事件X=Y有两种可能X=Y=0或X=Y=1他们的概率分别是0.3×0.3=0.9和0.7×0.7=0.49所以P{X=Y}=0.9+0.49=0.58

设随机变量X的概率分布为P{X=k}=e-1/K!

P(1)E(X)=D(X)=1E(X^2)=2P(X=EX^2)=P(X=2)=1/(2e)如有意见,欢迎讨论,共同学习;如有帮助,

设随机变量X的分布律为X -2 -1 0 1 2,求Y=X^2的分布律,Y的分布函数,P{Y

设随机变量X的分布律为X-2-1012P1/51/61/51/1511/30于是,Y=X^2的分布律为X^2014P1/57/3017/30Y的分布函数为F(y)=P{Y

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为

P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

设X与Y为独立同分布的离散型随机变量,其概率分布列为P(X=n)=P(Y=n)=(1/2)^n,n=1,2,...,求X

P(X+Y=n)=(n-1)(1/2)^n以上,使用全概率公式即可再问:麻烦,能不能在详细一点。我比较笨。再答:打公式有点麻烦额,我就简写一下吧P(X+Y=n)=P(X=1)P(Y=n-1)+P(X=

设随机变量X服从参数为p的几何分布,试证明:E(1/X)=(-plnp)/(1-p)

X和1/X对应的概率是一样的,都是p*(1-p)^(n-1),那么E(1/X)=∑(1/k)*p*(1-p)^(k-1),其中,k从1到无穷.E(1/X)=p/(1-p)∑[(1-p)^k]/k=p/

设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P(X=0)=P(X=1)=12

由于∀z∈R,FZ(z)=P(Z≤z)=P(XY≤z)而X,Y是定义于同一个样本空间之上的随机变数设S=(Y=0)+(Y=1),则利用全概率公式,得FZ(z)=P(Y=0)P(XY≤z|Y=0)+P(

概率论与数理统计习题解答:设X,Y为独立同分布的离散型随机变量,其分布列为P(X=n)=P(Y=n)=1/(2的n次方)

卷积P(X+Y=K)=ΣP(X=n,Y=K-n)n从1到K-1=ΣP(X=n)P(Y=K-n)n从1到K-1=(K-1)/(2的K次方)K从2到∞

设随机变量X的分布律为 X -2 ,0 ,2 P 0.4 ,0.3 ,0.3 问E(X ^2)=?

简单噻,先求X^2的分布律X^204P0.30.7EX^2=0*0.3+4*0.7=2.8

设离散型随机变量X的概率分布为P.

需要知道随机变量X的取值范围,(一)如果X的取值范围是1,2,3···则由所有情况概率总和为1可知:r*(p+p^2+p^3+```)=r*p/(1-p)=1,则p=1/(1+r)(二)如果X的取值范

设随机变量X的分布律为P{X=k}=aλ

由于∞k=0P{X=k}=1,又eλ=∞k=0λkk!,∴a∞k=0λkk!=aeλ=1∴a=e-λ

设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X

E(Xn)=0×0.5+2×0.5=1E(X)=∑(1~n)E(Xi)/(3^i)=∑(1~n)1/(3^i)∑(1~n)1/(3^i)是一个等比数列,公比1/3,用等比求和公式得E(X)=1/2D(