设X服从正态分布,求Y=2X^2 1的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:46:52
设X服从正态分布,求Y=2X^2 1的概率密度
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的概率密度.

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

设随机变量X,Y相互独立,且都服从正态分布N(0,σ^2),求Z=(X^2+Y^2)^0.5的方差

并不是很确定这个答案,但是觉得是一个还算有道理的解释.方差=积分(积分(X^2+y^2)*pdf(x正太)*pdf(y正太)dx)dy(上面的式子是由方差的积分定义得到的).由于xy相互独立,上面的积

设x服从正态分布,Y服从均匀分布u(-h,h),x,y相互独立,求z=x+y的概率密度函数

FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z

设二维随机变量(X,Y)服从二维正态分布,求(X,Y)的联合概率密度函数f(x,y)

套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/

设随机变量X和Y都服从正态分布,则(X,Y)一定服从二维正态分布吗?

不独立的话,函数形状在三维空间就不是那种草帽型扩散的函数相互独立联合密度里新的指数是-{(x-u1)^2/o^1+(y-u2)^2/o2^2}(x,y)在圆心为(u1,u2),双轴比例为o1,o2的所

设随机变量X和Y都服从正态分布N(1,4),且X和Y的相关系数为-0.5,求X/2+Y的方差

N(1,4).X/2~N(1/2,1)D(X/2)=1,D(Y)=4-0.5=COV(X/2,Y)/[根号1*根号4]=COV(X/2,Y)/2,COV(X/2,Y)=-0.5*2=-1D(X/2+Y

设x服从标准正态分布,求:1,x的概率密度,2,Y=x平方的概率密度

1,X的密度函数f(x)=1/√(2π)*exp(-x^2/2)2,设y>0P(Y≤y)=P(-√y≤X≤√y)=1/√(2π)*积分(-√y到√y)exp(-x^2/2)dx=2/√(2π)*积分(

设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求

终于见到考研的题了,做初高中的做的我郁闷,你等等我算算哈相关系数为0,所以xy相互独立,边缘密度分别为N(0,1)标准正态,然后E(x^2)+E(y^2)=EX+DX+DY+EY=2再问:期待您的高见

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设随机变量X 服从正态分布 N(μ,σ^2),y=ax+b 服从标准正态分布,则a=?,b=?

YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为2的正态分布,而Y服从标准正态分布.

由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立

概率论求解答.设随机变量X服从标准正态分布,求随机变量Y=1-2|X|的分布密度.

再问:为什么那里要加绝对值?再答:公式。针对单调增和单调减

设随机变量X与Y独立,X服从正态分布N(μ,σ^2 ),Y服从[-pi,pi]上的均匀分布,求Z=X+Y的密度函数

fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)