设x和y相互独立,他们的分布律p=1 2^k求x y的分布律

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 01:10:18
设x和y相互独立,他们的分布律p=1 2^k求x y的分布律
设随机变量X与Y相互独立,且服从(0,2)上的均匀分布,求Z=|X-Y|的分布函数和概率密度

因为随机变量X与Y相互独立,且服从(0,2)上的均匀分布,则x-y区间为(-2,2),从而Z=|X-Y|服从(0,2)上的均匀分布,根据若r.v.ξ服从[a,b]上均匀分布,其分布密度为P(x)=1/

设相互独立的两个随机变量X,Y具有同一分布率,且X的分布率为

解(X,Y)组合情况有以下四种:(0,0),(0,1),(1,0),(1,1)对应概率均是14对于后三种情况,Z=1,对于第一种情况,Z=0故:Z的分布律为Z=0,P=14Z=1,P=34

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

求解一道关于分布律的题目 设X和Y是两个相互独立的随机变量

P(Z=0)=P(X=0){P(Y=0)+P(Y=-1)}=0.3P(Z=1)=1-P(Z=0)=0.7如有意见,欢迎讨论,共同学习;如有帮助,

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

概率论题目:设X,Y 相互独立,X 和Y 的分布律分别为P(X=0)=0.3,P(X=1)=0.7和P(Y=0)=0.3

选D事件X=Y有两种可能X=Y=0或X=Y=1他们的概率分别是0.3×0.3=0.9和0.7×0.7=0.49所以P{X=Y}=0.9+0.49=0.58

设X的分布律如下,Y=X^2,试证明X与Y不相关又不相互独立

EX=-1/3+1/3=0EXY=EX^3=1/3*(-1)^3+1/3*1^3=0Cov(X,Y)=EXY-EXEY=0P(X=1,Y=0)=0P(Y=0)=P(X=0)=1/3P(x=1)*P(Y

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

设随机变量X与Y相互独立,下表列出了二维随机向量(X,Y)的联合分布律及关于X和关于Y的边缘分布律中的部分数

首先填x1,y1吧,就是因为P11+P21=P.j,所以有P11=1/6-1/8=1/24然后填P1.,因为P1.*P.1=P11,所以P1.=(1/24)/(1/6)=1/4然后再用P11+P12+

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X和Y相互独立,N(μ,σ^2),U(-π,π),求X+Y的分布.

把分布密度写出来,用卷积公式. 我算到下面这里也不会了:

设随机变量X和Y相互独立,其概率分布分别为: 如图

(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4

设随机变量X和Y相互独立且具有相同的分布,X的概率分布为 X -1 1 Pi 1/2 1/2 求P{X=Y}及P{X>Y

P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1)=P(X=-1)P(Y=-1)+P(X=1)P(Y=1)=1/4+1/4=1/2P(X>Y)=P(X=1,Y=-1)=P(X=1)P(Y=-

设随机变量X和Y相互独立同分布,U=X+Y,V=X-Y,则U和V独立性说明

cov(U,V)=cov(x+y,x-y)=cov(x,x)-cov(x,y)+cov(y,x)-cov(y,y)变量X和Y相互独立-->cov(x,y)=cov(y,x)=0量X和Y相互同分布-->