设X和Y独立且都服从U[0,1]的均匀分布,求:Z=X Y的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:02:40
设X和Y独立且都服从U[0,1]的均匀分布,求:Z=X Y的概率密度
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设随机变量X与Y相互独立,且都服从正态分布N(0,1),则P{max(X,Y)≥0}=______.

P{max(X,Y)≥0}=1-P{max(X,Y)<0}=1-P{X<0,Y<0}由于随机变量X与Y相互独立,所以:P{max(X,Y)≥0}=1−P{X<0}P{Y<0}=1−Φ2(0)=34.故

大神求教概率论 可以图片 设X,Y相互独立且服从同一分布,U(0,1),求Z=X+Y

用公式计算,需要讨论积分范围.经济数学团队帮你解答.请及时评价.谢谢!         

一道概率论的题目设X,Y相互独立,且都服从N(0,1)分布,试求E(根号X^2+Y^2)

这是二维的Maxwell分布,你学大学物理会遇到三维的.不过对于只求期望的话,不用求它的分布函数.E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+

设随机变量X和Y相互独立,且都服从正态分布N(0,1),计算概率:P(X*X+Y*Y

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-

设X和Yshi相互独立且都服从均值为0,方差为1/2的正态分布求随机变量|X-Y|的方差

真正的|X-Y|的方差要比这样算的小很多...定义I{x>y}=1如果x>y;否则为0I{x

设随机变量X,Y相互独立,且都服从[-1,1]上均匀分布,求X,Y的概率密度

你.有我当年风范f(x)={1/2-1再问:0,其他是什么意思啊直接在下面一行写就行了啊?再答:大括号把两行扩起来,就像我写的那样,扩两行,我这只扩了一行再问:能不能有点过程,我在考试啊,不能直接这样

设随即变量X和Y相互独立,且都服从正态分布N(u,m^2),求max(X,Y)的数学期望 我需要答案,

是不是以x,y建立坐标轴,借助图像y>=x确定的呢……表示不知道答案不用谢

设x与y相互独立,且均服从正态分布n(μ,σ^2),设u=ax+by,v=ax-by,且ab不等于0,试求u和v的相关系

晕,x,y是独立的,但u,v里都有x,所以u,v就不独立了,而是相关的,于是就有相关系数.而相关系数的公式在计算的时候,就和Du,Dv有关系,而Du,Dv又和Dx,Dy有有关系,所以,……再问:不是,

如果随机变量X和Y都服从正态分布且相互独立,那么U=X+Y和V=X+Y也都服从正态分布且独立,为什么独立?

我个人认为你的题目是不是写错了?是否是U=X+Y,V=X-即使是如此,两者独立也仅在X,Y同方差的情况下成立的样子.因为,对于正态分布来说,独立等价于不相关,也就是说二者的协方差cov(U,V)=0(

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量X与Y独立同分布,且都服从标准正态分布N(0,1),试证:U=X^2+Y^2与V=X/Y相互独立

这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图: