设X与Y相互独立,且同服从参数为的泊松分布,求M=max(X,Y)的分布律
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:51:23
X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕
fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ
Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2
由随机变量X服从区间[0,5]上的均匀分布,得出E(X)=5/2 由Y服从参数为3的指数分布,得出E(Y)=3 由X与Y相互独立,知E(XY)=E(X)×E(Y)=15/2再问:5/2的/是乘的意
(1)由已知,f(x)=1,(0
密度函数f(x)=1,0
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
把他们各自的密度函数写出来再一加就是e^-2(e^x-e^y)
随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,
X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答
F(X+Y=1)=P(X+Y1)=1-F(1)=1-P(X+Y
D(2X-3Y)=4*D(X)+9*D(Y)D(X)=n*p*q=100*0.2*0.8=16D(Y)=λ=3所求为64+27=91
求出XY联合概率密度以后,在坐标轴XY上画出Y=-X-1的线,再根据X和Y的取值范围ie,即X>0,Y>0,把联合概率密度在围成的三角形内进行2重积分,即可算出最后答案,