设x~E(2),求Y=1-e∧-2x的概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:54:56
E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?
设y=(2x²+x+1)e^(2x),求y的100阶导数?y′=(4x+1)e^(2x)+2(2x²+x+1)e^(2x)=(4x²+6x+3)e^(2x)y″=(8x+
采用拉格朗日记法y'=2cos2x+2*1/2(1+2x)^-1/2+0
E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+
e(2)e(4)E(X)=1/2,E(Y)=1/4D(X)=1/4,D(Y)=1/16E(X+Y)=E(X)+E(Y)=3/4D(Y)=E(Y^2)-(E(Y))^2E(Y^2)=D(Y)+(E(Y)
x=e^-tdx/dt=-e^-ty=e^-2tdy/dt=-2e^-2tdy/dx=(dy/dt)/(dx/dt)=(-2e^-2t)/(-e^-t)=2e^t/(e^t)²=2/e^t
混合求导问题
dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���
dx/dt=-e^tdy/dt=1-e^-tdy/dx=(dy/dt)/(dx/dt)=[e^(-t)-1]/e^td(dy/dt)/dt=-e^(-t)*e^t-e^t*[e^(-t)-1]/e^2
f(x)=0.5e^xx≤00.5e^(-x)x>0可见f(x)是偶函数①E(2X)=2EX=2∫Rxf(x)dx=2∫【-∞,0】0.5*x*e^xdx+2∫【0,+∞】0.5*x*e^(-x)dx
对等式两边同时求导:dy/dx=-e^-x/(1+e^-x)dy=-1/(1+e^+x)
y=e^(x/2)+x^2*sin√xy′=1/2*e^(x/2)+2x*sin√x+x^2*1/(2√x)*cos√x
两边对x求导得y'=e^y+xe^y*y'y'=e^y/(1-xe^y)dy=e^y/(1-xe^y)dx再问:好快....后面的都懂....不过可以说一下为什么两边对x求导后不是e^y+xe^y么.
请看图求采纳
y=-(x+1),所围区域x(-(-1,0)E(x)=(a+b)/2=(-1+0)/2=-0.5E(2x-3y)=E(2x-3*(-x-1))=E(5x+3)=5E(x)+3=0.5E(xy)=-E(
解y'=dy/dx=(x²e^sinx)'=2xe^sinx+x²e^sinx(sinx)'=2xe^sinx+cosx*x²e^sinx∴dy=(2xe^sinx+x&
点击看大图
e(2)e(4)∴E(X)=1/2E(Y)=1/4D(X)=1/4D(Y)=1/16E(X+Y)=E(X)+EY=3/4E(2X-3Y²)=2E(X)-3E(Y²)D(Y)+(EY