设XY相互独立且都服从正态分布N(0,9)样本X1X2分别来自总体XY证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:09:59
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y
P{max(X,Y)≥0}=1-P{max(X,Y)<0}=1-P{X<0,Y<0}由于随机变量X与Y相互独立,所以:P{max(X,Y)≥0}=1−P{X<0}P{Y<0}=1−Φ2(0)=34.故
Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2
1)E(ξ)=E(X+Y)=E(X)+E(Y)=0+0=0;2)E(η)=E(X-Y)=E(X)-E(Y)=0-0=0;3)D(ξ)=E[ξ-E(ξ)]²=E[X²+2XY+Y
Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2
依然正态分布 +1的话只是平均值+1,不影响方差图片来自维//……基,不添加链接了以防答案被吞
1.XY相互独立,相关系数r=02.E(Z)=E(2X+Y)=2E(X)+E(Y)=03.D(Z)=[(2X+Y)^2]=4D(X)+D(Y)+4E(X)E(Y)=4+1+0=54.N(0,5)5.f
N(u,δ^2/n),这是正态分布的一个性质,满足正态分布的随机变量之和也是满足随机变量的,具体证明书上有,用的是特征函数.所以知道是正态分布后,期望方差很好求,一下子就确定了
设Z=X+Y,X、Y独立且都服从正态分布N(μ,12),Z也服从正态分布D(Z)=D(X)+D(Y)=1,E(Z)=μ+μ=2μZ~N(2μ,1)所以:Z-2μ~N(0,1)P(Z≤1)=P(Z-1≤
随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2
并不是很确定这个答案,但是觉得是一个还算有道理的解释.方差=积分(积分(X^2+y^2)*pdf(x正太)*pdf(y正太)dx)dy(上面的式子是由方差的积分定义得到的).由于xy相互独立,上面的积
分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-
1/(PI)^O.5
真正的|X-Y|的方差要比这样算的小很多...定义I{x>y}=1如果x>y;否则为0I{x
是不是以x,y建立坐标轴,借助图像y>=x确定的呢……表示不知道答案不用谢
我个人认为你的题目是不是写错了?是否是U=X+Y,V=X-即使是如此,两者独立也仅在X,Y同方差的情况下成立的样子.因为,对于正态分布来说,独立等价于不相关,也就是说二者的协方差cov(U,V)=0(
Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²
这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图: