设x=e∧u usinv,y=e∧u-ucosv;
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:18:45
令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²
E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?
1、dy=(-5e*(-5x)/(cos²x))dx那个(tanx)‘=sec²xdx=(1/cos²x)dx再问:试卷怎么答再答:dy=e*(-5x)*(-5)-sec
E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+
详细过程请见下图,希望对亲有帮助(看不到图的话请Hi我,审核要一段时间)
dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���
dy=(e^(-1/x))*(-1/x)dx=(e^(-1/x))*(1/x*x)dx
这是一个二维的随机变量,不知道是连续或是离散的不妨设为离散的,(对于连续的只要把求和符号换成积分符号就行啦!)设(X,Y)的联合分布列和边际分布列为:P(X=ai,Y=bj)=pij,i,j=1,2,
dy=[cosx*e^sinx+3^x*ln3]dx
dy=(e^sinx*cosx+3^xln3)dx
题目是不是e^(e^(x/y))=e^x再问:亲是期望啊现在已经会了多谢再答:好的,恭喜你!
对等式两边同时求导:dy/dx=-e^-x/(1+e^-x)dy=-1/(1+e^+x)
两边对x求导得y'=e^y+xe^y*y'y'=e^y/(1-xe^y)dy=e^y/(1-xe^y)dx再问:好快....后面的都懂....不过可以说一下为什么两边对x求导后不是e^y+xe^y么.
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
要注意E(kX)=kE(X),k是常数E[(X-E(X))*(Y-E(Y))]=E[XY-XE(Y)-YE(X)+E(X)E(Y)]=E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)=
/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'
解y'=dy/dx=(x²e^sinx)'=2xe^sinx+x²e^sinx(sinx)'=2xe^sinx+cosx*x²e^sinx∴dy=(2xe^sinx+x&
点击看大图
若独立则不相关,不相关不一定独立.设A,B独立P(A)P(B)=P(AB)cov(x,y)=E(XY)-E(X)E(Y)=E(X)E(Y)-E(X)E(Y)=0,因此A,B不相关.反之,A,B不相关c