设x1x2相互独立,均服从参数为2的指数分布则依概率收敛于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:40:25
设x1x2相互独立,均服从参数为2的指数分布则依概率收敛于
设随机变量X、Y相互独立,且均服从参数λ的指数分布,则E(2X-Y+3)= ,D(2X-Y+3)= .要详细解答

因为X、Y相互独立,且均服从参数λ的指数分布所以E(X)=E(Y)=1/λD(X)=D(Y)=1/λ²∴E(2X-Y+3)=2E(X)-E(Y)+3=1/λ+3D(2X-Y+3)=4D(X)

19.设随机变量X~B,Y服从参数为3的泊松分布,且X与Y相互独立,则 D(X+Y)=______.

X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕

设随机变量X与Y均服从参数为λ的指数分布,且X与Y相互独立,求Z=X+Y的密度函数

fx(x)=λe^(-λx)f(x,y)=λ²e^(-λx-λy)z-x>0,z>xfZ(z)=∫(-∞,+∞)f(x,z-x)dx=∫(-∞,+∞)f(x,z-x)dx=∫(0,z)λ&#

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

随机变量的数学期望设随机变量ξ,η相互独立,ξ服从参数为λ的指数分布,η服从参数为n,p(0

因为随机变量ξ,η相互独立,所以E(ξη)=E(ξ)E(η)而E(ξ)=1/λ,E(η)=np所以E(ξη)=np/λ

大学概率论:设X,Y相互独立,都服从参数为2的指数分布,则P(X

解 实际上本题就是不用计算也能得出所求的概率为1/2.因为X和Y是相互独立的,且服从相同的分布,联合密度是边缘密度之积,由对称性可得X<Y的概率一定是1/2.当然X>Y的概率也是

已知随机变量x和y相互独立且均服从参数λ=2的指数分布,问,随机变量...

x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量x与y相互独立,都服从参数为1的指数分布,求P{X

对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设X Y相互独立,均服从参数为1的指数分布,求随机变量Z=X/Y的密度函数

这个问题其实挺简单的,你看一下课本吧,基础题目呦!

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

高数填空设相互独立的随机变量X服从(0,2)上的均匀分布,Y服从参数为2的指数分布,则当0

∫[0,2]1/2dx∫[0,2]1/2*e^(-y/2)dy=1/4∫[0,2]∫[0,2]e^(-y/2)dxdy再问:e^(-y)?再答:没有啦,搞错上限了∫[0,x]1/2dx∫[0,y]1/

设相互独立的随机变量X Y均服从参数为1的指数分布.则当X>0,Y>0时,(X,Y)的概率密度f(X,Y)=

指数分布的随机变量的概率密度为:1/Ψ*e^(-x/Ψ)所以X的概率密度为e^(-x),x>0Y的概率密度为e^(-y),y>0由于X,Y相互独立所以f(X,Y)=e^[-(x+y)],x>0,y>0

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为

D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,