设x1x2是来自N(0,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:38:20
因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n
x1+x2=M-1.x1x2=N-2;X1小于0,X2-3X1小于0,所以x2
用√表示根号首先,2个数都是大于0的我们来比较他们的倒数1/[√(n+2)-√(n+1)]=√(n+2)+√(n+1)1/[√(n+1)-√n]=√(n+1)+√n√(n+2)+√(n+1)>√(n+
所求数学期望与X~N(0,1)的数学期望相同,为0.
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+
x1x2是方程x^2-13x+m=0的两根,所以deta=13*13-4*1*m>=0,==>m
∵x1,x2是一元二次方程x2-3x-1=0的两个实数根,∴x1+x2=-−31=3,x1•x2=−11=-1,则x12+x22+4x1x2=(x1+x2)2+2x1x2=32+2×(-1)=7.故答
x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a,x1+x2=(-b-b)/2a=-b/ax1x2=[(-b)^2-(√(b^2-4ac))^2]/4a^2=[b
x²-3x-2=0x₁+x₂=-b/a=3;x₁x₂=c/a=-2;∴x₁+x₁x₂+x₂=3
期望值和方差均求和即可,因为这个X1+X2+X3是线性的关系.再问:我想知道是怎么算的?谢谢!再答:E(X+Y)=E(X)+E(Y)方差=E[(X+Y)²]-[E(X+Y)]²=E
因为x1,x2是x^2-x-4=0的根,所以x1^2-x1-4=0,x2^2-x2-4=0x1^2=x1+4,x1^3=x1^2+4x,x1^3+5x2^2+10=(x1^2+4x1)+5x2^2+1
由韦达定理得,x1+x2=-p,x1x2=q代入(x1+1/x1)+(x2+1/x2)=0,即(x1+x2)+(x1+x2)/(x1x2)=-p-p/q=0得p=0或q=-1(1)当p=0时,有x1+
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
根据韦达定理x1+x2=-px1*x2=q而x1^2+3x1x2+x2^2=(x1+x2)^2+x1x2=1也就是p^2+q=1(x1+1/x1)+(x2+1/x2)=(x1+x2)+(1/x1+1/
取对数,原不等式等价于x1lnx1+x2lnx2+...+xnlnxn≥(x1+x2+..+xn)(lnx1+lnx2+...+lnxn)/n即n(x1lnx1+x2lnx2+...+xnlnxn)≥
再问:但为什么可以分解成x1×x2+x1+x2+1?再答:…只是把原式展开而已,我没有跳步骤,你没学过?