设X1.....X10是来自正态总体N的一个样本求P的概率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:21:12
设X1.....X10是来自正态总体N的一个样本求P的概率
概率论与数理统计的题目 设x1,x2,.xn是来自U(-1,1)的样本

U(-1,1)  -->f(x) = 1/2 for -1 < x < 1;&nb

设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

设X1,X2,...,X6为来自正态总体N(0,σ^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X4+X

服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.

概率论题目设X1,X2,…,x6为来自正态总体N(0,o^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X

服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√

卡方分布如何求自由度设X1,X2,X3,X4是来自正太总体N(0.4)的简单随机样本,X=a(X1-2X2)^2+b(3

自由度肯定是2,就是可以转化成两个标准正太分布的平方之和,a,b都是来让后边的两个分布都等于标准正太分布的.再问:我自己已经做出来了,不过分还是给你好了……

设X1,X2,...Xn是来自正态总体N(μ,σ^2)的简单随机样本

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

大学概率与数理统计设X1,X2,.X9是来自正态总体N(μ,4)的简单随机样本,X拔是样本均值,一直P{|X拔-μ|

o=根号4=2n=9P{|X拔-μ|/(o/根号n)再问:额,我们还没讲过置信区间,μ=1.3067,答案再答:我后头不是给你写了步骤了3o换成o/3除写成乘了。。。μ/(o/3)=1.961.96*

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

设X1.X2.Xn是来自正态总体N(3,4)的样本,则1/4倍的Xi-3的平方求和服从的分布为?

由Xi~N(3,4)得Xi-3~N(0,4)得(Xi-3)/4~N(0,4/(4^2))所以(Xi-3)/4~N(0,1/4)

设X1,X2.Xn是来自正态总体N(0,1)的样本,则随机变量Y=C(X1-X2+X3-X4)^2~x^2(1)则常数C

E(X1-X2+X3-X4)=0D(X1-X2+X3-X4)=4D(X)=4χ²(1)D(√c(X1-X2+X3-X4))=c4=1c=1/4如有意见,欢迎讨论,共同学习;如有帮助,

已知函数满足y=f(x+1)是偶函数 且 在[1,正无穷大)上为增函数,且x10 x1+x2

因为x10,x1+x2f(x2+2)=f(x2+1+1)=f(-(x2+1)+1)=f(-x2)【上式中的f(x2+1+1)=f(-(x2+1)+1)是因为y=f(x+1)是偶函数即f(x+1)=f(

概率论与数理统计二题在理工科—数学目里 提了一个问题,“设X1,X2,X3,X4,X5,X6是来自正态总体N(0,4)的

是否是这个http://zhidao.baidu.com/question/549533306.html再问:是,不过已经解决了,谢谢再答:呵呵,没有关系.祝你学习进步,快乐成长.

设X1,X2,X3,X4是来自正态总体N(0,4)的样本,令统计量Y

若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服

1.设X1,X2...X10∈N+,且满足X1+X2+...X10=50,求X1^2+X2^2+X3^2+...+X10

现在没时间,只能粗略的帮你看一下!第二题的话,因为我自己是搞信息学竞赛的,所以运用sg函数的原理(其实就是博弈类算法)就很简单了,如果是一般数学证明那就得想一想.至于第一题的话,首先你必须明白,数学是

概率及统计高手进,设x1 x2 .x9 来自正态总体N(0,4)的简单随机样本,求系数a,b,c使

x1+x2~N(0,8)x3+x4+x5~N(0,12)x6+x7+x8+x9~N(0,16)由于x^2分布定义为标准正态分布的平方和,因此a(x1+x2),b(x3+x4+x5),c(x6+x7+x