设X1,X2相互独立,且都服从N(0,1)分布,试求E(根号(X^2 Y^2))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:56:22
这两题貌似很难的,在我们学校的论坛上见过,有牛人回答出了:第一题:U的概率分布FU(u)=P{U
服从自由度为(2,2)的F分布X1+X2和X2+X4都服从自由度为2的卡方分布,所以[χ2(2)/2]/[χ2(2)/2]~F(2,2)建议你看下书本吧,三大抽样分布.
如果λ=8那答案就是对的
(X1,X2,X3)在立体区域0x1+x2}的概率之和.且由对称性不难看出这三个事件的概率是相等的.而概率P{x3>x1+x2}就是由平面x3=x1+x2,x1=0,x2=0,x3=1这四个平面所围立
想法:考虑能否求出U的分布函数,进而求其数学期望设F(y)是U的分布函数由定义:F(y)=P(U
所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计
具体过程如图,点击可放大:再问:谢谢您!好棒的!希望以后还可以请教您问题!再问:请问你可以帮我解答这个问题吗?再问:
把有两个1和三个1的情况加起来就好了.或者1减去一个1和没有1的情况.
依概率收敛到N(λ,λ/n)(根据中心极限定理)再问:这是辛钦大数的题再答:依概率收敛到λ,因为Xi的期望是λ
Cov(X1+X2,X1-X2)=Var(X1)-Cov(X1,X2)+Cov(X1,X2)-Var(X2)=Var(X1)-Var(X2)=0所以X1+X2和X1-X2不相关.如果(X1,X2)的联
P[Z>t]=P[X1>t,...,Xn>t]=P[X1>t]^n,得知Z亦为参数为n的指数分步,所以期望是1/n,方差是1/n^2.做数学题最大的乐趣是想题,考试的时候没有人给你问.
Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²
D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,
密度函数f(x)是X1的密度函数fX1(x)和X2的密度函数fX2(x)的卷积:fX1(x)*fX2(x)=∫(-∞→+∞)fX1(t)*fX2(x-t)dt当然,前提是X1和X2是独立的连续型随机变
用定义做就行lim(n->∞)P{[∑(1,n)Xi-n*E(Xi)]/[√n*√D(Xi)]≤x}=Φ(x)因为Xi~P(λ),所以E(Xi)=D(Xi)=λ,代到上式lim(n->∞)P{[∑(1
服从正态分布的随机变量的线性组合仍然服从正态分布,所以样本均值(X-Y)服从N(0,36)分布,(注:X-Y服从N(u1-u2,(σ1^2)/n1+(σ2^2)/n2).剩下的就是求正态分布的概率问题