设X1,X2...X6为来自总体N(01)样本,设Y=(X1 X2 X3)^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:00:21
COV(Y,Z)=COV(X1+X2+X3,X4+X5+X6)=COV(X1,X4)+COV(X1,X5)+COV(X1,X5)+.COV(X3,X6)=9*1/3=3D(Y)=D(X1+X2+X3)
服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.
∵x1,x2,…,x7为自然数,且x1<x2<x3<…<x6<x7,∴159=x1+x2+…+x7≥x1+(x1+1)+(x1+2)+…+(x1+6)=7x1+21,∴x1≤1957,∴x1的最大值为
服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√
∵x1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,利用整除性,x1必是10的奇数倍,又x1<x2,可得x1=10x2=94,x1=30x2=81,x1=50x2=68,(x1+
由题可知21(X1+X2)+12X2=2010X1+X2+X3=2(X1+X2)X1+X2=(2010-12X2)/21又所有数字由自然数构成当X2=10时X1+X2=(2010-120)/21=90
61当七个数分别为20212223242526时,和为161,而且后四个数不能变小,变小后再满足和为159就不满足题意,所以当x1x2x3为192022或182122时求得最大值为61.
首先取x1=x2=x/2=>f(x)=f(x/2)^2>=0任取x1f(1)x^2+y^2
(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4
是否是这个http://zhidao.baidu.com/question/549533306.html再问:是,不过已经解决了,谢谢再答:呵呵,没有关系.祝你学习进步,快乐成长.
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X
=(3×4+6×8)÷12=5
期望值和方差均求和即可,因为这个X1+X2+X3是线性的关系.再问:我想知道是怎么算的?谢谢!再答:E(X+Y)=E(X)+E(Y)方差=E[(X+Y)²]-[E(X+Y)]²=E
x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|
X1X2X3X4X5X6X7sum50681181863044907942010这是我通过EXCEL算出来的结果X1+X2+X3=236
亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!
根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√
根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X