设x1,x2,x3,x4为来自参数为n,p的二项分布总体,试求p2的无偏估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:08:46
E(X)=E(X1+X2+X3)=E(X1)+E(X2)+E(X3)=0,同理E(Y)=0E(XY)=E(X2^2)+E(X3^2)=2B^2Cov(X,Y)=E(XY)-E(X)*E(Y)=2B^2
服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.
x=[ones(13,1),x1,x2,x3,x4];[b,bint,r,rint,stats]=regress(y,x);b,bint,stats
由题可知21(X1+X2)+12X2=2010X1+X2+X3=2(X1+X2)X1+X2=(2010-12X2)/21又所有数字由自然数构成当X2=10时X1+X2=(2010-120)/21=90
1+1+1+1+5=1*1*1*1*51.01+1.01+1.01+1.01+99.497561940310821517382150186644=1.01*1.01*1.01*1.01*99.4975
1假设X1+X2=M为最大值,则X2+X3,X3+X4和X4+X5均小于或等于M所以x1+x2+x3+x4+x5
x1=(y1+y3-y2)/2x2=(y1+y2-y3)/2x3=(y2+y3-y1)/2因为向量组x1,x2,x3,x4线性相关,所以1)若向量组x1,x2,x3线性相关,则y1,y2,y3也线性相
(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4
令x2+x3+...+xn-1=A(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn)=(x1+A)(A+
令x1=k(x2+x3+x4)1/3(x2+x3+x4)
服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是
期望值和方差均求和即可,因为这个X1+X2+X3是线性的关系.再问:我想知道是怎么算的?谢谢!再答:E(X+Y)=E(X)+E(Y)方差=E[(X+Y)²]-[E(X+Y)]²=E
12-22201-1-1111-13a转化1004a-101-1-1100003-a所以3-a=0a=3时有解X1=2-4X4X2=1+X3+X4X3X4随意
X1X2X3X4X5X6X7sum50681181863044907942010这是我通过EXCEL算出来的结果X1+X2+X3=236
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
x1x2+x3x4≥2√(729/x5)即取定一个x5后,x1x2,x3x4不会都小于√(729/x5)x2x3+x4x5≥2√(792/x1)√(729/x5)+√(792/x1)≥2√(729*7
根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X
因为正态分布具有再生性,就是由这些样本经过变形组成的样本空间,仍然服从正态分布N(2,4),则E(X)=2,D(X)=4则E[(X1+X2+X3+X4)/4]=1/4[E(X1)+E(X2)+E(X3