设X1,X2,...是独立同分布的随机变量序列,且E(Xi)=u,D(Xi)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:15:50
设X1,X2,...是独立同分布的随机变量序列,且E(Xi)=u,D(Xi)=
大学 概率论 X1,X2...Xn是独立同分布U(0,θ)随机变量.Yn 是X1,X2...Xn中的最大值者,即 Yn=

哎,都是最基本的题,写出来你参考一下,希望对你有所帮助吧:(很多式子,在下面的图片里)

考研 设随机变量X1,X2,X3相互独立

数学期望具有线性性,有:(1)E(X+Y)=EX+EY.并且不必要求X,Y独立(2)E(aX+b)=aEX+b根据X1,X2,X3的分布,有E(X1)=4*1/2=2E(X2)=6*1/3=2E(X3

设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.

选A要满足切比雪夫大数定律,必须要求Xi的方差存在(一致有界)当然,D(Xi)存在蕴含了E(Xi)存在简单一点的方法就是排除对B选项,E(Xi)=∑{k=1,∞}k/[k*(k+1)]=∑{k=1,∞

设随机变量X1,X2,.Xn,...是独立同分布,其分布函数为F(X)=a+(1/π)*arctan(x/b),b≠0,

B绝对值号的意义:保证所求的概率不会出现负数的尴尬情况

概率中心极限定理,如果X1 X2 X3 .Xn是独立同分布的随机变量且具有相

这是三个变量,不是有固定值的数字三个全部服从相同的概率分布举个例子1~10随机抽取个数字X1你其实并不知道X1到底是多少X1服从分布就是以10%的概率取到1~10任何一个数X2如果说和X1的分布相同,

设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x

由林德贝格中心极限定理lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=1-Φ(x).其中Φ(x)是标准正态分布的分布函数.

设x1,x2是一元二次方程x

解题思路:利用一元二次方程根与系数的关系求解。解题过程:最终答案:略

概率论问题求教设三个连续型随机变量X1,X2,X3互相独立同分布,则P(x1

1/6吧,三个连续随机变量相等的情况忽略为0,所以x1,x2,x3从小到大排就是3的全排列之1非要证明的话只能用条件概率一步步展开了

设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)

设X1...Xn的概率密度函数是fX(x),概率分布函数是FX(x)设随机变量Y=max(X1,...,Xn-1)先求Y的概率分布函数FY(y):FY(y)=P{Y

设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.

记Y=∑(Xi-X)².X,Y一般不是相互独立的.例如n=3,X1,X2,X3都服从-1,1两点均匀分布.可以算得P(X=1)=(1/2)³=1/8.P(Y=0)=3·(1/2)&

设随机变量X1,X2,……Xn相互独立同分布,且都有密度函数f(x)=1/π(1+x^2),证X1,X2……Xn不满足中

Xi服从Cauchy分布,EXi不存在,所以X1,X2……Xn不满足中心极限定理条件再问:Cauchy分布,这个没学过再答:就是密度是科西分布,按期望的定义其期望不存在

设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的

注意到相同下标的X不独立,不相同下标的X相互独立,则该题就解决了

设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )

cov(X1,Y)=1/n·∑(i=1~n)cov(X1,Xi)=1/n·cov(X1,X1)=(λ^2)/n所以,选A再问:cov(X1,X2),cov(X1,X3),cov(X1,X4)…cov(

设x1,x2(x1

根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X