设X1,X2,...X5是独立且服从相同分布的随机变量,且每一个xi

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:39:00
设X1,X2,...X5是独立且服从相同分布的随机变量,且每一个xi
考研 设随机变量X1,X2,X3相互独立

数学期望具有线性性,有:(1)E(X+Y)=EX+EY.并且不必要求X,Y独立(2)E(aX+b)=aEX+b根据X1,X2,X3的分布,有E(X1)=4*1/2=2E(X2)=6*1/3=2E(X3

已知x1,x2,x3,x4,x5是非负实数,且x1+x2+x3+x4+x5=100,M是x1+x2,x2+x3,x3+x

答案:100/3由M是x1+x2,x2+x3,x3+x4,x4+x5中的最大值得到,x1+x2

设x1,x2,x3,x4,x5,x6,x7是自然数,且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+

∵x1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,利用整除性,x1必是10的奇数倍,又x1<x2,可得x1=10x2=94,x1=30x2=81,x1=50x2=68,(x1+

min= X1+X2+X3+X4+X5

(1)先把模型化成单纯形法所需的模型,因为约束条件都是等号且没有单位向量,所以加上人工变量,化成后的模型如下.min=x1+x2+x3+x4+x5+M*x6+M*x7+M*x8x1+x2+x6=100

设x1,x2,x3,x4,x5,x6,x7是自然数,且x1

由题可知21(X1+X2)+12X2=2010X1+X2+X3=2(X1+X2)X1+X2=(2010-12X2)/21又所有数字由自然数构成当X2=10时X1+X2=(2010-120)/21=90

设X1、X2、X3、X4、X5均为自然数,且X1+X2+X3+X4+X5=X1*X2*X3*X4*X5 求X5的最大值

1+1+1+1+5=1*1*1*1*51.01+1.01+1.01+1.01+99.497561940310821517382150186644=1.01*1.01*1.01*1.01*99.4975

答多少算多少.1.设X1,X2,X3,X4是非负实数,使得x1+x2+x3+x4+x5=100,M是x1+x2,x2+x

1假设X1+X2=M为最大值,则X2+X3,X3+X4和X4+X5均小于或等于M所以x1+x2+x3+x4+x5

设随机变量X1X2X3...X5相互独立同分布且其方差存在,记W=X1+X2+X3,Z=X4+X3+X5,则W与Z的相关

设X期望是a,方差是,则DX=bDW=3b,DZ=3b,D(W-Z)=DW+DZ-2COV(W,Z),则COV(W,Z)=b,则相关系数等于1/3

设x1,x2是一元二次方程x

解题思路:利用一元二次方程根与系数的关系求解。解题过程:最终答案:略

设X1,X2,X3,X4,X5,X6是来自总体N(0,1)的样本,为什么X1+X2+X3~N(0,3)?

期望值和方差均求和即可,因为这个X1+X2+X3是线性的关系.再问:我想知道是怎么算的?谢谢!再答:E(X+Y)=E(X)+E(Y)方差=E[(X+Y)²]-[E(X+Y)]²=E

设X1,X2X,X3,X4,X5,X6,X7为自然数,相加得2010,求X1+X2+X3=?

X1X2X3X4X5X6X7sum50681181863044907942010这是我通过EXCEL算出来的结果X1+X2+X3=236

设实数x1,x2,x3,x4,x5均不小于1,且x1·x2·x3·x4·x5=729,则max{x1x2,x2x3,x3

x1x2+x3x4≥2√(729/x5)即取定一个x5后,x1x2,x3x4不会都小于√(729/x5)x2x3+x4x5≥2√(792/x1)√(729/x5)+√(792/x1)≥2√(729*7

设x1,x2(x1

根据韦达定理:x1+x2=-2(1)x1x2=-1(2)(1)^2-4(2)=(x1-x2)^24+4=(x1-x2)^2x1-x2=±2√2再问:当x1<x2的时候,那x1-x2是不是就只等于-2√

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X