设X1,X2,....Xn来自正态分布N(0,)的样本,求统计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:06:39
U(-1,1) -->f(x) = 1/2 for -1 < x < 1;&nb
因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n
两边同乘[(1+x1)+(1+x2)+.(1+xn)]即(n+1)即证:[(1+x1)+(1+x2)+.(1+xn)]*[x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn]=>1显然
均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+
和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2
设其中有a个2,b个1,c个零,d个-1,可知a+b+c+d=n且a,b,c,d均为大于等于零的整数,并满足2a+b-d=194a+b+d=99令S=X1的立方+X2的立方+……Xn的立方则有S=8a
x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|
样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
亲爱的同学,你的题目抄写错误或图片拍摄不清晰,老师无法清楚理解题意,请重新核实你的问题再提问,谢谢!
a^2*S^2
根据方差的意义知,方差为0,则没有波动,故有:x1=x2=…=xn.故填x1=x2=…=xn.
这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式
均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n
分析:所谓排列的奇偶性,是指排列的逆序数为奇数还是为偶数.应用于线性代数的行列式.至于什么是“逆序数”,可以解释为调换原来次序的次数.例如“1,2,3,4,5”的逆序数为0(偶数),而“1,3,2,4