设X1,X2,...,Xn是来自泊松分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:01:05
设X1,X2,...,Xn是来自泊松分布
概率论与数理统计的题目 设x1,x2,.xn是来自U(-1,1)的样本

U(-1,1)  -->f(x) = 1/2 for -1 < x < 1;&nb

设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不

同学..这个已经接近柯西不等式的一般形式了一般形式为(a1^2+a2^2+.an^2)(b1^2+b2^2+...b^2)>=(a1b1+a2b2+.anbn)^2令ai=√xi,bi=1/√xi就得

设x1,x2,……,xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2用柯西

题1本身就是柯西不等式,一步即得题2,3皆可用均值不等式调和平均数≤算术平均数3中化Xi^2\(1+Xi)为Xi-1+1\(1+Xi)

设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...

两边同乘[(1+x1)+(1+x2)+.(1+xn)]即(n+1)即证:[(1+x1)+(1+x2)+.(1+xn)]*[x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn]=>1显然

设x1 x2 ……xn属于R+ 且x1+x2+……+xn=1求证 x1^2/(1+x1) +x2^2/(1+x2)+……

会柯西不?由柯西不等式:X1^2/(1+X1)+X2^2/(1+X2)+……Xn^2/(1+Xn)>=(X1+X2+……+Xn)^2/(n+X1+X2+……Xn)=1/(n+1)得证.

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设S的平方是X1,X2,.Xn的方差,S的平方是X1+5,X2+5,.,Xn+5的方差.则下列结论正确的是

设第一组数据X1,X2,.Xn的平均数为x则第二组数据X1+5,X2+5,.,Xn+5的平均数为x+5根据方差公式,两组数据中,每个数据与平均数的差对应不变.故选A

设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+

最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2

那个Z=min{X1,X2,.,Xn}的概率密度具体是怎样求出来的?

利用分布函数转化计算.以后请将问题放在数学分类,否则我不再回答.经济数学团队帮你解答.请及时评价.谢谢!

设X1、X2、X3……Xn是整数,

设其中有a个2,b个1,c个零,d个-1,可知a+b+c+d=n且a,b,c,d均为大于等于零的整数,并满足2a+b-d=194a+b+d=99令S=X1的立方+X2的立方+……Xn的立方则有S=8a

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设x1,x2,…,xn平均数为.x

根据方差的意义知,方差为0,则没有波动,故有:x1=x2=…=xn.故填x1=x2=…=xn.

(x1+x2+...+xn)^2

这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式

设排列x1 ix.xn的逆序数是k,求排列xn x(n-1) .x2 x1的逆序数

相对逆序的概念,也可以定义个正序的概念;一个排列逆序的总数称为逆序数,那么相应地也有正序数的概念--正序的总数;对于一个n个数组成的排列,组合数Cn2就是在n个数中任取两个数的种数;这里Cn2=n(n

设排列x1,x2…Xn是奇排列,那么Xn,Xn-1,…X1的奇偶性如何?求详解,

分析:所谓排列的奇偶性,是指排列的逆序数为奇数还是为偶数.应用于线性代数的行列式.至于什么是“逆序数”,可以解释为调换原来次序的次数.例如“1,2,3,4,5”的逆序数为0(偶数),而“1,3,2,4

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X