设x1 x2 为函数f(x)=ax^3 bx^2-a^2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:30:56
设x1 x2 为函数f(x)=ax^3 bx^2-a^2x
设函数f(x)=ax

存在.∵b>0,①当a>0时,定义域是包含x=-ba<0,值域是f(x)≥0,不可能相等;②当a=0时,定义域是x≥0,值域也是f(x)≥0,符合题意;③当a<0时,定义域是[0,−ba],值域是[0

设函数f(x)=log1/2(1-ax/x-1)为奇函数,a是常数.

f(-x)=log1/2(1+ax)/(-x-1)=-f(x)=-log1/2(1-ax)/(x-1)=log1/2(x-1)/(1-ax)(1+ax)/(-x-1)=(x-1)/(1-ax)1-x^

函数f(x)=ax^2+bx+c(a>0),f'(x)为f(x)的导函数,设A={x/f(x)

f(x)=ax^2+bx+c=a(x-x1)(x-x2),抛物线开口向上,导数为负数的点在对称轴左边.不妨设x1

设函数f(x)=lnx-ax

解题思路:(I)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间.(Ⅱ)当a=1/2时,g(x)=x(f(x)+1)=x(lnx-1/2x+1)=xlnx+x-1/2x2,(x>1)

设函数f(x)=ax+x/(x-1)(a为正的常数)

(1)f(x)=ax+x/(x-1)(a为正的常数)则f(x)=1+a(x-1)+1/(x-1)则当x>1时,则f(x)=1+a(x-1)+1/(x-1〉=1+2根号下[a(x-1)*1/(x-1)]

数学题、取值范围设F(x)=(ax^2)/2-2ax+lnx,已知函数F(x有两个极值点x1,x2,且X1X2>1/2、

由f(x)=ax²/2-2ax+lnx,f′(x)=ax-2a+1/x=0ax²-2ax+1=0,由x1x2=1/a>1/2,∴a<2.

设a>0,函数f(x)=ax+bx2+1,b为常数.

(1)证明f′(x)=-ax2-2bx+a(x2+1)2,令f′(x)=0,得ax2+2bx-a=0(*)∵△=4b2+4a2>0,∴方程(*)有两个不相等的实根,记为x1,x2(x1<x

设函数f(x)=eXx2+ax+a,其中a为实数.

(Ⅰ)f(x)的定义域为R,∴x2+ax+a≠0恒成立,∴△=a2-4a<0,∴0<a<4,即当0<a<4时f(x)的定义域为R.(Ⅱ)由题意可知:f′(x)=x(x+a−2)ex(x2+ax+a)2

已知函数f(x)=lnx-ax,a为常数.若函数f(x)有两个零点x1,x2,试证明x1x2>e^2

先求导y'=1/x-a,令y'=0,x=1/a,可得函数在1/a处取得最大值为-lna+1>0,得00就可得x2>2/a-x1设函数g(x)=ln(2/a-x)-a(2/a-x)-(lnx-ax),g

设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.

(1)f(x)在(2,+∞)上是单调减函数,则当x∈(2,+∞),f′(x)=1x-a≤0恒成立,a≥1x恒成立,∴a≥(1x)max=12.令g′(x)=ex-a=0,得x=lna.当x<lna时,

设函数f(x)的定义域为R,若f(π/2)=0,f(π)=-1,且对任意的X1X2有f(X1)+f(X2)=2f(X1+

假设,函数f(x)是域的R,为3π/2的最小的正周期的功能,如果函数f(x)={cosx(-π/2≤xf的值是相等的数量(-15π/4)吗?分辨率:∵f(x)是域R,3π/2周期函数的最小正周期∴°F

1.设随机变量X的概率密度函数为:f(x)=AX 0

1.根据∫(-∞积到+∞)f(x)dx=1有∫(0积到1)Axdx+∫(1积到2)(B-x)dx=11/2A+B-3/2=1又因为密度函数连续,有A=B-1解得A=1B=22.平均成绩即期望μ=729

设函数f(x)=6x^3+3(a+2)x^2+2ax,若f(x)的两个极值为x1,x2,且x1x2=1,求实数a的值

应该是两个极值在x=x(1),x=x(2)处取得吧?求导,f'(x)=18x^2+6(a+2)x+2a令f'(x)=0,则由x=x(1),x=x(2)处取得极值可得x(1)x(2)=2a/18=1得a

设函数f(x)=6x^3+3(a+2)x^2+2ax,若f(x)的两个极值为x1,x2,且x1x2=1,求实数a的值.

f(x)=6x^3+3(a+2)x^2+2axf'(x)=18x²+6(a+2)x+2a令f'(x)=0得18x²+6(a+2)x+2a=09x²+3(a+2)x+a=0

设函数f(x)=ax平方+bx+1(a,b为实数) F(x)={f(x),x>0 -f(x),x0,n0 a>0,f(x

(1)由题意,当x>0时,F(x)=f(x)=ax²+bx+1,∴F(1)=a+b+1=4,即a+b=3;当x0,n0f(x)为偶函数,b=0当x>0时,F(x)=x²+1,当x0

设函数f(x)定义域(0,+∞),且f(4)=1,对任意正实数x1x2,有f(x1x2)=f(x1)+f(x2),且当x

(1)因为f(x2)-f(x1)/x2-x1>0,所以分两类:a.分子分母都大于0.b.分子分母都小于0.然后运用单调性的定义,不管哪种情况,函数都是增函数.(2)令x1=x2=1,代入f(x1x2)

设函数f(x)=6x3+3(a+2)x2+2ax. 若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值

f(x)=6x³+3(a+2)x²+2axf'(x)=18x²+6(a+2)x+2af'(x1)=f'(x2)=0,x1和x2都是f'(x)的根根据韦达定理,两根之积x1