设X,Y独立且都服从标准正态分布,Z=√x² y²,求Z的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:50:43
设X,Y独立且都服从标准正态分布,Z=√x² y²,求Z的概率密度
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

X Y是独立变量 且都服从标准正态分布 求E{X^2/(X^2+Y^2)}

2X^2/(X^2+Y^2)服从F(1,2)所以,所求期望为F(1,2)的期望的一半.

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

设随机变量X与Y都是相互独立,切都服从标准正态分布,则,2X-Y+1服从什么分布,

依然正态分布 +1的话只是平均值+1,不影响方差图片来自维//……基,不添加链接了以防答案被吞

设随机变量X,Y独立都服从标准正态分布N(0,1),则X方/Y方服从的分布为

X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F

设随机变量X与Y相互独立,且都服从标准正态分布,令ζ=X+Y,η=X-Y.求:(1)E(ζ) ,E(η),D(ζ),D(

1)E(ξ)=E(X+Y)=E(X)+E(Y)=0+0=0;2)E(η)=E(X-Y)=E(X)-E(Y)=0-0=0;3)D(ξ)=E[ξ-E(ξ)]²=E[X²+2XY+Y&#

设随机变量X,Y相互独立,且都服从[-1,1]上均匀分布,求X,Y的概率密度

你.有我当年风范f(x)={1/2-1再问:0,其他是什么意思啊直接在下面一行写就行了啊?再答:大括号把两行扩起来,就像我写的那样,扩两行,我这只扩了一行再问:能不能有点过程,我在考试啊,不能直接这样

设随机变量X,Y相互独立,且都服从两点分布B 则P(X=Y)=

P(X=Y)=P(X=0)P(Y=0)+P(X=1)P(Y=1)=1/9+4/9=5/9如有意见,欢迎讨论,共同学习;如有帮助,再问:为什么这么算啊?再答:根据独立性。书上讲更全面一些,建议您看书。

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

概率统计设X,Y相互独立且都服从标准正态分布,则E|X-Y|则E|X-Y|^2是多少,我算的是4,一直算不对,

直接用积分计算期望如图如图,平方的期望可反用方差公式简单计算.经济数学团队帮你解答,请及时采纳.

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

x,y互相独立且服从标准正态分布,则f(x,y)也服从正态分布吗?

1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.

设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为2的正态分布,而Y服从标准正态分布.

由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立

设随机变量X与Y独立同分布,且都服从标准正态分布N(0,1),试证:U=X^2+Y^2与V=X/Y相互独立

这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图: