设X,Y互相独立,且X~N(720,302)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:58:06
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
1/(PI)^O.5
首先X-2Y还是正态分布而E(X-2Y)=E(X)-2E(Y)=0-2=-2D(X-2Y)=D(X)+(-2)²D(Y)=1+4×2=9所以X-2YN(-2,9)
正态分布添加剂,XY也是正常E(XY)=EX-EY=1D(XY)=DX+DY=13XYN(113)
E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)
解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9
正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)
3X-Y还是正态分布利用公式E(aX+bY)=+aE(X)+bE(Y)D(aX+bY)=+a²D(X)+b²D(Y)
因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
根号(2*pi)积分可以化成极坐标做.
X与Y互相独立所以ρ=0
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
A和B是独立的,所以A发生与否和B没有直接关系,P{AUB}表示{Xa}发生的概率.只有当B事件改为B={X>a}时,AUB才为整体,P{AUB}=1.
解析E(X)=-3E(Y)=3.6E(X+Y)=-3+3.6=0.6E(X+Y)²=0.36
因为X,Y独立所以D(Z)=D(X-2Y)=D(X)+4D(Y)=9+4=13
x-3y~N(-6,10)E(x-3y)=E(x)-3E(y)=0-3*2=-6;D(x-3y)=D(x)+9D(y)=1+9*1=10.