设X N(0,1)试求 Y=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:30:53
设X N(0,1)试求 Y=E
设X1>0,Xn+1=3+4/Xn,(x=1,2···),证明X趋向无穷时Xn存在,并求此极限

(先假设极限存在,设为x,则x=3+4/x,所以x=4,舍去x=-1)由归纳法知x[n]>0,进而x[n]>3(n>1)|x[n+1]-4|=|4/x[n]-1|=|4-x[n]|/|x[n]|1)所

证明数列收敛 求极限设X1>0 a>0 且 X(n+1)=1/2(Xn+a/Xn) 求数列{Xn}极限

记a的算术平方根为Q(抱歉我还只有一级不能插图片,连个公式也插不了)1.当X1>Q时,证有界:设Xn>Q,(显然N=1时成立),则X(n+1)=(Xn+a/Xn)/2>(Q+a/Q)/2=Q(y=x+

设x1>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,3.n),证明数列极限Xn n趋向无穷存在 并且求极限值.

x(n+1)=1/2*(xn+1/xn)>=1/2*2=1xn=1时取等号即xn是大于等于1的数2(X(n+1)-Xn)=2X(n+1)-2Xn=Xn+1/Xn-2Xn=(1-Xn^2)/Xn

设X1>0,xn+1=3(1+xn) / 3+xn (n=1,2…)求lim xn.

记limxn=a,则limxn+1=limxn=a.对xn+1=3(1+xn)/3+xn两边取极限,得到a=3(1+a)/(3+a),解得a=正负根号3.由已知条件易知xn>0,所以limxn>=0.

设X1≥0,Xn=√﹙2+Xn-1﹚ ﹙n=2,3...),求极限limXn

问题一般化:设X1≥0,Xn=√( a+X[n-1]) ﹙n=2,3...),求极限limXn首先,对任意正整数n,xn>0;  其次,x1<x2.

设Xn>0,Xn+1(第n+1项)=ln(1+Xn),求n趋向于无穷时Xn的极限

按你的做法,极限设为a,可得a=ln(1+a),其实这个有解,就是a=0.可以通过特殊值验证来求这个极限,设X1=1,那么X2=ln(1+1)=ln2约=0.69

已知随机变量X1,X2……Xn相互独立,且每个Xi的期望都是0,方差都是1,令Y=X1+X2+……+Xn,求E(Y^2)

由于任取ij(i不等于j),Xi与Xj独立,从而E(XiXj)=EXi*EXj=0.又1=DXi=E(Xi^2)-(EXi)^2=>E(Xi^2)=1,任取i.故E(Y^2)=E(X1+X2+……+X

设随机变量X,Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?

设a>0,{Xn}满足X0>0,Xn+1=1/2(Xn+a/Xn) ,n+1是下标,n=0,1,2...,证明:{Xn}

证明:∵x(0)>0且x(n+1)=[x(n)+a/x(n)]/2∴x(n)>0∴由均值不等式知[x(n)+a/x(n)]/2≥√a即x(n+1)≥√a∴数列{x(n)}有下界.(1)又x(n+1)/

设数列{ Xn } 满足│Xn+1-Xn│≤k│Xn-Xn-1│,n=2,3,...(0

这个显然吗.因为设:yn=│Xn+1-Xn│,n=1,2,...因为(yn+1)/yn≤k

设0Xn=(Xn-1)*[1-(Xn-1)]*[1-(Xn-1)-(Xn-1)^2]=-----=X1*[1-X1]*[

收敛好证,极限难求啊!点击图片有收敛证明

设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限

注意到x(n+1)>=2√(xn/2*1/xn)=√2,且x(n+1)-xn=1/xn-xn/2=(2-xn^2)/(2xn)

设1xn矩阵y=[1/2,0,...,0,1/2] A=E-Y的逆阵xY,B=E+2Y的逆阵xY E为n阶单位矩阵,求A

说明:题目中"A=E-Y的逆阵xY".y是1xn矩阵,应该是y的转置y'!首先有YY'=1/4+1/4=1/2.所以AB=(E-Y'Y)(E+2Y'Y)=E+Y'Y-2Y'(YY')Y=E+Y'Y-Y

设x1=1,x2=2,xn+2=根号下xn+1*xn 求limn→∞ xn

xn+2=根号下xn+1*xn你可以解释一下吗?再问:xn是个数列,xn+2=根号下(xn+1乘xn)

设x1=a>0,x2=b>0,xn+2=根号下(xn+1)(xn) 求limn→∞ xn 其

结果是把Xn求出来是再问:不知道怎么求xn,求指教再答:接下来等比数列,不用我算了吧~~~再问:Thankyou

设﹛Xn﹜满足-1<X0<0,Xn+1=Xn∧2+2Xn(n=0,1,2,…),证明﹛Xn﹜收敛,并求极限

Xn+1=Xn∧2+2Xn=(xn+1)^2-1>=-1xn有下界-1由于Xn+1=Xn∧2+2Xnxn+1-xn=xn^2+xn=xn(xn+1)所以Xn=Xn-1∧2+2Xn-1利用数学归纳x1=