设S为第一卦限球面x^2 y^2 z^2=r^2上侧,计算a=∫∫Sx^2dS

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:55:57
设S为第一卦限球面x^2 y^2 z^2=r^2上侧,计算a=∫∫Sx^2dS
计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2

为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部

∫∫s(z+x+y)ds,式中S为球面x∧2+y∧2+z∧2=a∧2

这是第一类曲面积分,由于积分曲面关于三个坐标面均是对称的,而被积函数分别关于z,x,y是奇函数,因此本题结果为0再问:有过程么再答:没过程,直接写结果,分析过程已写给你了。

求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.

你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

计算曲面积分I=∫∫(x+2y+z)ds其中区域:球面x^2+y^2+z^2=a^2在第一挂限部分

z=√(a^2-x^2-y^2),zx’=-x/√(a^2-x^2-y^2),zy’=-y/√(a^2-x^2-y^2),ds=√(zx’^2+zy’^2+1)dxdy=dxdy/√(a^2-x^2-

求下列第一型曲线积分 ∫L|y|ds,其中L为球面x^2+y^2+z^2=2与平面x=y的交线

x²+y²+z²=2x=y∴2x²+z²=2所以L的参数方程为:x=y=cosθ,z=√2sinθ,0≤θ≤2πds=√(x'²+y'

已知在平面直角坐标系中,点Q 的坐标为(4,0),点P是直线y=-2x+3上在第一象限内的一点。设三角形OPQ的面积为S

解题思路:利用一次函数的图象找出Y的取范围,并可以求出三角形的面积。解题过程:解:∵点P的坐标为(x,y),点Q的坐标为(4,0)∴△POQ的面积S=1/2OQ∙y=2y(S是y的正比例函数)由直线y

球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分

∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5

已知点A(8,0),点P在第一象限,P的坐标为(x,y),且2x+y=10,设三角形OPA的面积为S,求S与x之间的函数

由2x+y=10得:y=10-2x所以点p的坐标是(x,10-2x)又因为点P在第一象限,所以x>0,10-2x>0,所以x的取值范围是0

设∑为平面x+y+z=1在第一卦限中的部分,则∫∫6(2x+y+z+1)dxdy等于

原式=6∫dx∫(2x+y+(1-x-y)+1)dy(∵x+y+z=1,作图分析约去)=6∫dx∫(x+2)dy=6∫(x+2)(1-x)dx=6∫(2-x-x²)dx=6(2-1/2-1/

求球面x^2+y^2+z^2=1在第一卦限部分的切平面,使它与三坐标轴平面围成的四面体有最小体积

球面在第一卦限的法向量为(x0,y0,z0),切平面方程为(x-x0)x0+(y-y0)y0+(z-z0)z0=0,即xx0+yy0+zz0=1.与三坐标轴的交点为(1/x0,1/y0,1/z0),四

设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=

∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y&#

设∑是球面x^2+y^2+z^2=4,则曲面积分∮∫(x^2+y^2+z^2)dS=

面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x^2+y^2+z^2-2z)ds的值

不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x+y+z+1)ds的值 答案是4∏

根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π