设sn为n次独立实验中,事件A出现的次数,而事件A第一次实验
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:48:16
所求概率等于1-a、b、c都没有发生的概率,即:1-(1-Pa)*(1-Pb)*(1-Pc)(考虑的情况应该是n大于3).貌似我解错了~很长时间了都忘记了.但是思路肯定是对的.
答案:[1-(1-2p)^2]/2在n次独立重复试验中事件A发生1次的概率为C(n,1)*(1-p)^(n-1)*p^1;事件A发生3次的概率为C(n,3)*(1-p)^(n-3)*p^3;事件A发生
第一个问题:A至多发生一次的概率为(1-p)^n+np(1-p)^(n-1)=((1-p)+np)*(1-p)^(n-1)=(1+(n-1)p)*(1-p)^(n-1)第二个问题:A恰好发生一次的有n
p*p*...*p(k个)*(1-p)*(1-p)*...(1-p)(n-k个)有多少排列方式?从n个位置选k个放p就行了,也就是有C(n,k)种排列方式,而上述概率乘积为p^k*(1-p)^(n-k
二项分布,展开求和,中间要点小技巧0.5(1-(1-2p)^n)或者对n取1和无穷两个特殊值可以反解出来!
好!要用到N重伯努利实验公式P(A)=1/4,n=3,C(3,2)*{(1/4)∧2}*(1/4)=3/64
事件至少发生1次的概率为66/81,则时间发生0次的概率为1-66/81=15/81由二项分布知事件发生0次的概率为P(X=0)=p^0*q^n=q^n其中q=1-p=1-1/3=2/3所以15/81
这个问题不是已经解答过了吗pa=nchoosek(n,k)*p^k*(1-p)^(n-k);
1.组合数c(n,k)*p^k*(1-p)^k.2.p=(1/2*5%+1/2*0.25%)/(1/2*0.25%)=95.2%3.p=[c(n,k)*p^k*(1-p)^k]求和.其中:p=0.9,
A发生几次啊?如果是A恰好发生2次的货就选:D
n次试验中出现奇数次和偶数次的概率分别是((1-p)+p)^n的偶数项的和与奇数项的和(按照p的升幂,(1-p)的降幂排列).则P1=[((1-p)+p)^n-((1-p)-p)^n]/2=[1-((
P=C(n,k)p^k·q^(n-k)(k=0,1,2,3···,n)C(x,y)x是下标,y是上标
C(4,2)(2/3)^2*(1-2/3)^2=8/27四次中选2次*发生两次*未发生两次
记Xi为第i次试验A是否出现,A出现则Xi=1,不出现则Xi=0,那么μ=∑Xi,而且Xi之间是独立的,所以Dμ=∑DXi,DXi=pi(1-pi),所以Dμ=∑pi(1-pi).至于最大值的证明,只
在n次独立重复试验中事件A发生1次的概率为C(n,1)*(1-p)^(n-1)*p^1;事件A发生3次的概率为C(n,3)*(1-p)^(n-3)*p^3;事件A发生5次的概率为C(n,5)*(1-p
2C4×0.7×0.7×(1-0.7)×(1-0.7)=0.2646还有不懂的地方可以告诉我这个是有一个公式的P(X=K)=Cnk*p^k*q^(n-k)Cnk是组合数n个里面取k个公式表示的意义是在
P1=P2=P^n/2或P1=(P^n+1)/2,P2=(P^n-1)/2
C(m,n)*p^m*(1-p)^(n-m)再问:有什么详细的过程么??谢谢了再答:其中C(m,n)是n件事件中任取m件,A出现了m次,所以概率*p^mA有n-m次未出现,每次不出现的概率(1-p),