设sn为n次独立实验中,事件A出现的次数,而事件A第一次实验

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:48:16
设sn为n次独立实验中,事件A出现的次数,而事件A第一次实验
N次独立实验中,事件a,b,c互斥,且a,b,c发生的概率都p,请问n次事件中,a,b,c都至少发生一次的概率是多少.

所求概率等于1-a、b、c都没有发生的概率,即:1-(1-Pa)*(1-Pb)*(1-Pc)(考虑的情况应该是n大于3).貌似我解错了~很长时间了都忘记了.但是思路肯定是对的.

在每次试验中,事件a出现的概率为p,求在n次独立试验中 a出现奇数次的概率

答案:[1-(1-2p)^2]/2在n次独立重复试验中事件A发生1次的概率为C(n,1)*(1-p)^(n-1)*p^1;事件A发生3次的概率为C(n,3)*(1-p)^(n-3)*p^3;事件A发生

设在一次实验中事件A发生的概率为P,重复进行N次实验,则A至多发生一次的概率为?为什么

第一个问题:A至多发生一次的概率为(1-p)^n+np(1-p)^(n-1)=((1-p)+np)*(1-p)^(n-1)=(1+(n-1)p)*(1-p)^(n-1)第二个问题:A恰好发生一次的有n

"在一次实验中事件A发生的概率为P,在n次独立重复试验中事件A发生次的概率P(k)="这公式怎么理解啊?

p*p*...*p(k个)*(1-p)*(1-p)*...(1-p)(n-k个)有多少排列方式?从n个位置选k个放p就行了,也就是有C(n,k)种排列方式,而上述概率乘积为p^k*(1-p)^(n-k

事件A发生概率为P,则在n次独立重复试验中发生奇数次概率为多少?要过程

二项分布,展开求和,中间要点小技巧0.5(1-(1-2p)^n)或者对n取1和无穷两个特殊值可以反解出来!

事件A一次实验中发生的概率为1/4,则在3次独立重复试验中,事件A恰好发生2次的概率为

好!要用到N重伯努利实验公式P(A)=1/4,n=3,C(3,2)*{(1/4)∧2}*(1/4)=3/64

在一次试验中,事件A发生的概率为1/3,若在n次独立重复试验中,事件A至少发生一次的概率不小于66/81,则n的最小值?

事件至少发生1次的概率为66/81,则时间发生0次的概率为1-66/81=15/81由二项分布知事件发生0次的概率为P(X=0)=p^0*q^n=q^n其中q=1-p=1-1/3=2/3所以15/81

1.设事件A发生的概率为p,那么在n次独立重复试验中,事件A发生多少次的概率最大?

1.组合数c(n,k)*p^k*(1-p)^k.2.p=(1/2*5%+1/2*0.25%)/(1/2*0.25%)=95.2%3.p=[c(n,k)*p^k*(1-p)^k]求和.其中:p=0.9,

若在n次独立试验中,事件A在每次试验中出现的概率为P,试计算它在n次试验中出现奇数次和偶数次的概率P1和P2.

n次试验中出现奇数次和偶数次的概率分别是((1-p)+p)^n的偶数项的和与奇数项的和(按照p的升幂,(1-p)的降幂排列).则P1=[((1-p)+p)^n-((1-p)-p)^n]/2=[1-((

概率论 证明题设μ为n次独立试验中事件A出现的次数,在第i次试验中事件A出现的概率为pi,求Dμ 并证明:在1/n∑pi

记Xi为第i次试验A是否出现,A出现则Xi=1,不出现则Xi=0,那么μ=∑Xi,而且Xi之间是独立的,所以Dμ=∑DXi,DXi=pi(1-pi),所以Dμ=∑pi(1-pi).至于最大值的证明,只

在一次实验中,事件A发生的概率为p,求在n次独立重复实验中,事件A发生奇数次的概率.[1-(1-2p)^2]/2

在n次独立重复试验中事件A发生1次的概率为C(n,1)*(1-p)^(n-1)*p^1;事件A发生3次的概率为C(n,3)*(1-p)^(n-3)*p^3;事件A发生5次的概率为C(n,5)*(1-p

已知事件a在一次实验中发生的概率为0.7 求在4次独立重复犯,试验中 事件a恰好发生

2C4×0.7×0.7×(1-0.7)×(1-0.7)=0.2646还有不懂的地方可以告诉我这个是有一个公式的P(X=K)=Cnk*p^k*q^(n-k)Cnk是组合数n个里面取k个公式表示的意义是在

设事件A 在每次试验中出现的概率都为p,则在n次独立重复试验中事件A出现m次(0≤m≤n)的概率P=?

C(m,n)*p^m*(1-p)^(n-m)再问:有什么详细的过程么??谢谢了再答:其中C(m,n)是n件事件中任取m件,A出现了m次,所以概率*p^mA有n-m次未出现,每次不出现的概率(1-p),