设sntn分别是等差数列an,bn的前n项和,已知sn tn=2n 1 4n-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:57:08
设等差数列的等差为d,等比数列的等比是q,由a3=b3,得a4-d=b4q,又∵a4=b4,∴a4-a4q=d,∵S5-S3T4-T2=7,∴a5+a4b4+b3=a4+d+a4a4+a4q=7,即3
设等差数列的等差为d,等比数列的等比是q则a3=b3a4-d=b4/q又∵a4=b4∴a4-d=a4/qa4-a4/q=d∵(S5-S3)/(T4-T2)=5∴(a5+a4)/(b4+b3)=(a4+
∵{an}为等差数列,其前n项之和为Sn,∴S2n-1=(2n−1)(a1+a2n−1)2=(2n−1)×2an2=(2n-1)•an,同理可得,S′2n-1=(2n-1)•bn,∴anbn=S2n−
这个就要比a6/b6复杂多了.设{an}公差为d1,{bn}公差为d2.Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]=[2a1+(n-1)d1]/[2b1+(n-1)
∵anbn=2an2bn=a1+a2n−1b1+b2n−1=(2n−1)(a1+a2n−1) 2(2n−1)(b1+b2n−1) 2=s2n−1T2n−1∴anbn=2(2n−1)
答:1设an,bn的公差分别为d1,d2,Sn=na1+n(n-1)d1/2,Tn=nb1+n(n-1)d2/2,令S(n+3)=(n+3)a1+(n+3)(n+2)d1/2=Tn=nb1+n(n-1
∵a1=4,a4=1∴d=-1∵b1=4,b4=1又∵0<q<1∴q=2−23∴b2=243<a2=3∴b3=223<a3=2∴b5=2−23>a5=0∴b6=2−43>a6=-1故选A
首先等差数列的通项公式是关于n的一次式bn是等差数列,设bn=A*n+B则:a1+a2+a3+a4+...+an=n(A*n+B)=A(n^2)+Bna1+a2+a3+a4+...+a(n-1)=A(
设等差数列{an}和{bn}的公差分别为d1 和d2,则由题意可得S1T1=a1b1=2×13×1+1=12,即2a1=b1.再由S2T2=a1+a2b1+b2=2a1+d12b1+d2=2
由等差数列的性质和求和公式可得:a9b5+b7+a3b8+b4=a9b1+b11+a3b1+b11=a3+a9b1+b11=a1+a11b1+b11=11(a1+a11)211(b1+b11)2=S1
设Sn=k(7n^2+n)an=Sn-S(n-1)=k(14n-6)Tn=k(4n^2+27n)bn=Tn-T(n-1)=k(8n+23)an:bn==(14n-6)/(8n+23)再问:错·再答:哪
(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1
1.设a1=a则1/a1a2+1/a2a3+.+1/a(n-1)an=1/a(a+d)+1/(a+d)(a+2d)+……+1/[a+(n-2)d][a+(n-1)d]={d/a(a+d)+d/(a+d
∵等差数列{an}、{bn},∴an=a1+a2n−12,bn=b1+b2n−12,∴anbn=nannbn=n(a1+a2n−1)2n(b1+b2n−1)2=S2n−1T2n−1,又SnTn=7n+
设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9
∵SnTn=n2n+1,∴a7b7=2a72b7=132(a1+a13)132(b1+b13)=S13T13=132×13+1=1327,故选:C.
∵等差数列{an}和{bn}的前n项和分别为Sn和Tn,且SnTn=5n+32n+7,a5b5=9a59b5=s9T9=4825故选B.
设等差数列{an}的公差为d,则an=a1+(n-1)d.∴bn=(12)a1+(n-1)db1b3=(12)a1•(12)a1+2d=(12)2(a1+d)=b22.由b1b2b3=18,得b23=
设bn的公比为q,首项为bb+bq+bq^2=21/8b^3q^3=1/8所以bq=1/2解得b=1/8,q=4b=2,q=1/4当b=1/8,q=4,则d=-2,a1=3,an=5-2n当b=2,q