设sntn分别是等差数列an,bn的前n项和,已知sn tn=2n 1 4n-2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:57:08
设sntn分别是等差数列an,bn的前n项和,已知sn tn=2n 1 4n-2
设{an}是等差数列,{bn}是等比数列,Sn、Tn分别是数列{an}、{bn}的前n项和.若a3=b3,a4=b4,且

设等差数列的等差为d,等比数列的等比是q,由a3=b3,得a4-d=b4q,又∵a4=b4,∴a4-a4q=d,∵S5-S3T4-T2=7,∴a5+a4b4+b3=a4+d+a4a4+a4q=7,即3

设{an}是等差数列,{bn}是等比数列,记{an}{bn}的前n项和分别为Sn,Tn若a3=b3,a4=b4,且(S5

设等差数列的等差为d,等比数列的等比是q则a3=b3a4-d=b4/q又∵a4=b4∴a4-d=a4/qa4-a4/q=d∵(S5-S3)/(T4-T2)=5∴(a5+a4)/(b4+b3)=(a4+

设等差数列{an}与{bn}的前n项之和分别为Sn与S

∵{an}为等差数列,其前n项之和为Sn,∴S2n-1=(2n−1)(a1+a2n−1)2=(2n−1)×2an2=(2n-1)•an,同理可得,S′2n-1=(2n-1)•bn,∴anbn=S2n−

设Sn、Tn分别是等差数列an、bn的前n项和,Sn/Tn=(7n+2)/(n+3),则a6/b5=?

这个就要比a6/b6复杂多了.设{an}公差为d1,{bn}公差为d2.Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]=[2a1+(n-1)d1]/[2b1+(n-1)

等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=(  )

∵anbn=2an2bn=a1+a2n−1b1+b2n−1=(2n−1)(a1+a2n−1) 2(2n−1)(b1+b2n−1) 2=s2n−1T2n−1∴anbn=2(2n−1)

设数列{an},{bn}都是等差数列,它们的前n项和分别为sn,Tn

答:1设an,bn的公差分别为d1,d2,Sn=na1+n(n-1)d1/2,Tn=nb1+n(n-1)d2/2,令S(n+3)=(n+3)a1+(n+3)(n+2)d1/2=Tn=nb1+n(n-1

设{an},{bn}分别为等差数列与等比数列,且a1=b1=4,a4=b4=1,则以下结论正确的是(  )

∵a1=4,a4=1∴d=-1∵b1=4,b4=1又∵0<q<1∴q=2−23∴b2=243<a2=3∴b3=223<a3=2∴b5=2−23>a5=0∴b6=2−43>a6=-1故选A

设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列

首先等差数列的通项公式是关于n的一次式bn是等差数列,设bn=A*n+B则:a1+a2+a3+a4+...+an=n(A*n+B)=A(n^2)+Bna1+a2+a3+a4+...+a(n-1)=A(

由正数组成的等差数列{an}和{bn}的前n项和分别为Sn和Tn,且SnTn=2n3n+1,则a5b7=(  )

设等差数列{an}和{bn}的公差分别为d1 和d2,则由题意可得S1T1=a1b1=2×13×1+1=12,即2a1=b1.再由S2T2=a1+a2b1+b2=2a1+d12b1+d2=2

设等差数列{an},{bn}的前n项和分别为Sn,Tn若对任意自然数n都有SnTn=2n-34n-3,则a9b5+b7+

由等差数列的性质和求和公式可得:a9b5+b7+a3b8+b4=a9b1+b11+a3b1+b11=a3+a9b1+b11=a1+a11b1+b11=11(a1+a11)211(b1+b11)2=S1

设Sn,Tn分别是两个等差数列{an}{bn}的前n项之和,若Sn/Tn=7n+1/4n+27,则an:bn=?

设Sn=k(7n^2+n)an=Sn-S(n-1)=k(14n-6)Tn=k(4n^2+27n)bn=Tn-T(n-1)=k(8n+23)an:bn==(14n-6)/(8n+23)再问:错·再答:哪

设Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列.

(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1

1.设数列{an}是等差数列,an≠0.求1/a1a2+1/a2a3+...+1/a(n-1)an

1.设a1=a则1/a1a2+1/a2a3+.+1/a(n-1)an=1/a(a+d)+1/(a+d)(a+2d)+……+1/[a+(n-2)d][a+(n-1)d]={d/a(a+d)+d/(a+d

等差数列{an}、{bn}的前n项和分别为Sn、Tn,且SnTn=7n+45n−3,则使得anbn为整数的正整数的n的个

∵等差数列{an}、{bn},∴an=a1+a2n−12,bn=b1+b2n−12,∴anbn=nannbn=n(a1+a2n−1)2n(b1+b2n−1)2=S2n−1T2n−1,又SnTn=7n+

设数列{an}是公差不为零的等差数列

设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9

若两个等差数列{an}和{bn}的前n项和分别是Sn和Tn,已知SnTn=n2n+1,则a7b7等于(  )

∵SnTn=n2n+1,∴a7b7=2a72b7=132(a1+a13)132(b1+b13)=S13T13=132×13+1=1327,故选:C.

两等差数列{an}、{bn}的前n项和分别为Sn、Tn,且SnTn=5n+32n+7,则a5b5的值是(  )

∵等差数列{an}和{bn}的前n项和分别为Sn和Tn,且SnTn=5n+32n+7,a5b5=9a59b5=s9T9=4825故选B.

设{an}是等差数列,bn=(12)an.已知b1+b2+b3=218,b1b2b3=18.求等差数列的通项an.

设等差数列{an}的公差为d,则an=a1+(n-1)d.∴bn=(12)a1+(n-1)db1b3=(12)a1•(12)a1+2d=(12)2(a1+d)=b22.由b1b2b3=18,得b23=

设{an}是等差数列,bn=1/2^an,已知b1+b2+b3=21/8,b1*b2*b3=1/8,求等差数列的通项an

设bn的公比为q,首项为bb+bq+bq^2=21/8b^3q^3=1/8所以bq=1/2解得b=1/8,q=4b=2,q=1/4当b=1/8,q=4,则d=-2,a1=3,an=5-2n当b=2,q