设sn=a1-1 a1a2 log2(x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:46:55
设sn=a1-1 a1a2 log2(x-1)
数列{an}中,a1=1,前n项和Sn满足Sn^2=an(Sn-1/2),(1)求Sn的表达式 (2)设bn=Sn/(2

由Sn^2=an(Sn-1/2)=[Sn-S(n-1)](Sn-1/2)=Sn^2-[1/2+S(n-1)]Sn+1/2*S(n-1)化简为[1/2+S(n-1)]Sn=1/2*S(n-1)两边同除S

设数列an 的前项和为sn,sn=a1*(3^n -1),且a4=54,则a1=?

S4=a1(3^4-1)=80a1S3=a1(3^3-1)=26a1a4=S4-S3=54a1=54a1=1

设1=a1

∵a1,a3,a5,a7成公比为q的等比数列∴a1,a1q,a1q²,a1q³∵a2,a4,a6成功差为1的等差数列∴a2,a2+d,a2+2d即a2,a2+1,a2+2∵1=a1

设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=

an=-Sn.S(n-1)Sn-S(n-1)=-Sn.S(n-1)1/Sn-1/S(n-1)=11/Sn-1/S1=n-11/Sn=nSn=1/n

设数列an的前n项和为Sn,a1=1 ,an = 2Sn²/2Sn-1 (n≥2)

其实很简单还是用公式an=Sn-S(n-1)2Sn²/(2Sn-1)=an=Sn-Sn-1→S(n-1)=Sn-2Sn²/(2Sn-1)=-Sn/(2Sn-1)分子分母颠倒1/S(

设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn

解题思路:分析与答案如下,如有疑问请添加讨论,谢谢!点击可放大解题过程:最终答案:略

数列{an}满足a1=1,设该数列的前n项和为Sn,且Sn,Sn+1,2a1成等差数列.用数学归纳法证明:Sn=(2n-

解析:由题意2Sn+1=Sn+2a1=Sn+2归纳法证明当n=1时,S1=a1=1满足式子假设n=k时,成立即Sk=(2k-1)/2k-1则n=k+1时,Sk+1=1/2Sk+1=(2k-1)/2k+

设an=根号n+根号(n+1),求Sn=a1+a2+a3+...+an

你这个题目可能不对,可能应该是an=【根号n+根号(n+1)】的倒数,你重看一下题目,如果是我说的这个题目,就进行分母有理化,用裂项相消再问:打错啦哈谢谢提醒是an=根号n+1-根号n再答:用裂相相消

设等比数列{an}中,a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列,

Sn=a1(1-q^n)/(1-q)Sn+1=a1[1-q^(n+1)]/(1-q)Sn+2=a1[1-q^(n+2)]/(1-q)2Sn+2=Sn+Sn+1a1[1-q^(n+1)]/(1-q)+a

设数列an的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列

1.s2/s1=c+1s2=c+1a2=cs3/s2=(2+c)/2s3=(2+c)(c+1)/2a3=c(c+1)/22a2=a1+a32c=1+c(c+1)/2c^2-3c+2=0c=1或22.c

设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2

Sn+1=4an+2Sn=4a(n-1)+2相减得Sn+1-Sn=4an+2-4a(n-1)-2an+1=4an-4a(n-1)an+1-2an=2(an-2an-1)bn=2bn-1(2)求数列{a

设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sn+2-Sn=36,则n=(  )

由Sn+2-Sn=36,得:an+1+an+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.

设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列,设Bn=1-Sn,

存在,an=a1*3^(n-1),Sn=[a(n+1)-a1]/2,Bn=1-[a(n+1)-a1]/2=1-[(3^n)-1]*(a1)/2所以B1=1-a1,B2=1-4a1,B3=1-13a1如

设Sn为数列{an}的前n项和,已知a1不等于0,Sn=(2an/a1)-1,n属于N+.

(1)S1=a1=(2a1/a1)-1=1S2=2a2/a1-1=2a2-1=a1+a2=1+a2所以2a2-1=1+a2a2=2(2)Sn=(2an/a1)-1=2an-1Sn-1=(2an-1/a

设数列{an}的前n项和为Sn,a1=10,a(n+1)=9Sn+10

S(n+1)=Sn+a(n+1)=10Sn+10S(n+1)+10/9=10*(Sn+10/9)Sn+10/9成等比数列,q=10S1+10/9=10+10/9=100/9Sn+10/9=10*(n-

设数列an的首项a1等于1,前n项和为sn,sn+1=2n

a1=1a2=s2-a1=2-1=1a3=s3-a1-a2=4-1-1=2a4=s4-a1-a2-a3=6-1-1-2=2a5=s5-a1-a2-a3-a4=8-1-1-2-2=2a6=s6-a1-a

设数列An的前n项和为Sn,且a1=1,An+1=1/3Sn,

An+1=1/3Sn3An+1=Sn(1)3An=Sn-1(2)(1)-(2)得3An+1=4An(n大于等于2),所以An是以A2为首项q=4/3的等比数列A2=1/3A1,所以A2等于1/3An=

设数列{an}的前n项和为sn,sn=a1(3^n-2)/2(n≥1),a4=54,则a1=

等比数列前n项和公式Tn=a1(q^n-1)/(q-1)观察Sn=a1(3^n-2)/2=a1(3^n-1)/(3-1)-0.5即Sn为数列{an}的前n项和-0.5所以Sn为等比数列,公比为3,所以

设数列an的前n项和为sn 已知2Sn+1=Sn+λ(λ是常数),a1=2,a2=1.

2S2=S1+λ2(a1+a2)=a1+λa1=2a2=1代入λ+2=2(2+1)解得λ=42S(n+1)=Sn+42S(n+1)-8=Sn-4[S(n+1)-4]/(Sn-4)=1/2,为定值S1-