设n阶非零方阵A的每一个元素都等于他的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 18:27:10
设n阶非零方阵A的每一个元素都等于他的
设n阶方阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

设n阶方阵A的行列式为a,且每一行元素之和为b(b不为0),则A的第n列元素的代数余子式子之和是多少?最好有图.

把第1到第n-1列均加到第n列,则第n列全为b,将b提出并按第n列展开,可得行列式=b(1A1n+1A2n…+1Ann)=a,所以A的第n列元素代数余子式之和为a/b举个三阶行列式的例子:A=1230

问一个线性代数的问题设n阶方阵A的各特征值都大于0,为什么A+E的各特征值都大于1?

因为A+E的特征值分别是A的特征值+1!再问:就是问为什么啊。。再答:这个书上有结论的,其实证明也很简单:设a为A的任一特征值,x为对应的特征向量,即Ax=ax于是(A+E)x=Ax+Ex=ax+x=

n阶方阵A各行元素之和为n,A^2各行元素之和都等于多少

A^2(1,1,...,1)^T=AA(1,1,...,1)^T=A(n,n,...,n)^T=nA(1,1,...,1)^T=n(n,n,...,n)^T=n^2(1,1,...,1)^T所以A^2

设n阶方阵A的每一行只有一个元素是1其余元素是0;而且每一列的元素之和是1.证明:存在自然数m>0,使得A^m=E

啊,这个其实是比较显然的.每一行、每一列只有1个1,其它都是0的矩阵叫:permutationmatrix,中文叫:置换矩阵.每一个置换矩阵表示了一个置换变换.置换可以分解为轮换,设n阶矩阵分解为k个

设A为n(n>2且A为奇数)阶非零实方阵,并且A的转置等于A的伴随阵,如果A的第一行元素全部相等且为a,求a

由A^T=A*得|A|=|A^T|=|A*|=|A|^(n-1)所以|A|(|A|^(n-2)-1)=0所以|A|=0或|A|=1(n是奇数)再由A^T=A*两边左乘A得AA^T=AA*=|A|E所以

请教一道线性代数题设A为n阶方阵,且每一行元素之和都等于常数a,证明A的m次方(m为正整数)的每一个元素之和为a的m次方

数学归纳法做.对于任意一个方阵B,BA的第一行之和是(B11*A11+B12*A21+.+B1n*An1)+(B11*A12+B12*A12+.+B1n*An2)+.(B11*A1n+B12*A2n+

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

设n阶方阵A的各列元素之和为5,则A的一个特征值是

A的一个特征值是5A的特征值是|λE-A|=0的根,考虑方阵λE-A,他的各列元素之和是λ-5因为λE-A是把A取负再把每一列的某个元素加上一个λ.这样根据行列式的性质,通过变换:把第2至第n行各加到

设n阶方阵A的行列式为a,且每一行元素之和为b(不等于0),则A的第n列元素的代数余子和是?

过程如下,把|A|中所有列均加到第n列,结果第n列元素变为b,然后从第n列中提取b,设提取后的行列式为|B|,则b|B|=a,即|B|=a/b,把|B|行第n列展开,就得到|A|的第n列元素的代数余子

:设A是元素为整数的n阶方阵,则存在元素为整数的n阶方阵B,使得AB=E的充分必要条件

存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0

n阶方阵的证明题设n阶方阵A的每行元素之和都为常数a,求证:对于任意自然数m,A^m的每行元素之和都为a^m另外还有一题

第一个:用矩阵的乘法定义就可以了:你看当m=1的时候,结论成立,假设m=k-1的时候成立,证m=k的时候成立就可以了.第二个:把基础解系的定义搞明白就行了:也就是说,齐次方程组的任何解都可以用基础解系

设a是n阶方阵,若|A|=0,则A有一行元素全为零,

不对,比如a=1122a的行列式就等于0

设A是n阶方阵,若存在n阶非零方阵B,使得AB=BA=B,则A=E.为什么是错的?

因为矩阵B不一定可逆,如果B可逆,则由AB=B两边左乘B^(-1)就得到A=E,但是现在不知道B是否可逆,只能得到AB-B=O,即(A-E)B=O,而我们知道如果AB=O,不一定有A=O或B=O成立,

设n阶方阵A满足A^2+2A-3E=0证明A+4E的特征值都不是零.

因为A^2+2A-3E=0所以如果m_A(x)是矩阵A的最小多项式,定有m_A(x)|(x^2+2x-3)所以A得特征值只可能是x^2+2x-3的根1或者-3.所以|A+4E|≠0即A+4E的特征值都

设A为n阶非零实方阵,A的每一个元素aij等于它的代数余子式,即aij=Aij,(i,j=1,2,3,……n)证明A可逆

本题可以这样证,A的伴随矩阵A*(j,i)位元素为aij代数余子式Aij,由此可见,你给的题目是A的每一个元素aij等于它的代数余子式,即aij=Aij,得到A=(A*)'换种写法是A*=A'其中'是

设n阶非零方阵A的每一个元素都等于它的代数余子式,证明:r(A)=n

由于A非0,所以必存在一元素a(kl)≠0.再将|A|按第k行展开有|A|=a(k1)M(k1)+...+a(kl)+...+a(kn)(Mkn)=a(k1)²+...a(kl)²

设n阶方阵A及s阶方阵B都可逆,求

将逆矩阵设出来直接求解请见下图

设A为n阶非零方阵,且A中各行元素都对应成比例,又β1,β2,……βt是齐次线性方程组Ax=0的基础解系,则t=

A中各行元素都对应成比例则r(A)=1,则其次方程的基础解系个数S==N-1即t=n-1