设n阶行列式各行元素之和均为0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:03:08
设n阶行列式各行元素之和均为0
若行列式D各行元素之和等于0,则该行列式等于0,为什么?

这个太easy了,将没行元素都加到第一列,显然第一行等于零,因为行列式D各行元素之和等于0.有一行全是零,显然行列式等于零

请问若行列式D各行元素之和等于0,则该行列式等于多少?

等于0.将第2,3,.,n列均加到第1列,则第一列元素全部变为0,故行列式为0.

设n阶行列式|aij|中每一行诸元素之和为零,则|aij|=___.

行列式等于0.将所有列都加到第1列,则第1列元素全等于0,故行列式等于0

各列元素之和为0的n阶行列式之值等于0为什么

行列式有以下两个性质:1)在行列式中,一行(列)元素全为0,则此行列式的值为0.2)将一行(列)的k倍加进另一行(列)里,行列式的值不变.这里,将第二列加到第一列,将第三列加到第一列,……,将第N列加

设n阶方阵A的行列式为a,且每一行元素之和为b(b不为0),则A的第n列元素的代数余子式子之和是多少?最好有图.

把第1到第n-1列均加到第n列,则第n列全为b,将b提出并按第n列展开,可得行列式=b(1A1n+1A2n…+1Ann)=a,所以A的第n列元素代数余子式之和为a/b举个三阶行列式的例子:A=1230

设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则方程组AX=0的通解为

因为r(A)=n-1所以AX=0的基础解系所含向量的个数为n-r(A)=n-(n-1)=1.又因为A的各行元素之和均为零,所以a=(1,1,...,1)'是AX=0的一个非零解故a=(1,1,...,

若n阶可逆矩阵a的各行元素之和均为a证明a不等于0

考察矩阵A的行列式,由于的各行元素之和均为a,故将a的行列式的第二至第n列都加到第一列,则第一列都变为a,如果a=0则|A|=0,与矩阵A可逆矛盾,所以a不等于0.

设n阶行列式D=a,且D的每行元素之和为b(b不等于0),则行列式D的第一列元素代数余子式之和等于多少.详

a/b将每一列的各元素(除去第一列)加到第一列上来,则第一列全为b提取b出来,则第一列全为1,记此时的行列式为E,则a=bIEI,∵行列式等于对应于它的任意一列各元素与其代数余子式的乘积之和∴IEI即

设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为______.

n阶矩阵A的各行元素之和均为零,说明(1,1,…,1)T(n个1的列向量)为Ax=0的一个解,由于A的秩为:n-1,从而基础解系的维度为:n-r(A),故A的基础解系的维度为1,由于(1,1,…,1)

n阶方阵A各行元素之和为n,A^2各行元素之和都等于多少

A^2(1,1,...,1)^T=AA(1,1,...,1)^T=A(n,n,...,n)^T=nA(1,1,...,1)^T=n(n,n,...,n)^T=n^2(1,1,...,1)^T所以A^2

设n阶矩阵A的各行元素之和均为0,且A的秩为n-1,则齐次线性方程组的通解?网上搜了,但是我还是不懂为什么各行元素均为0

A的秩为n-1,说明AX=0的基础解系含n-r(A)=1个解向量.A的各行元素之和均为0,说明A(1,1,...,1)^T=(0,0,...,)^T=0即(1,1,...,1)^T是AX=0的非零解,

设n阶行列式中有n(n-1)个以上元素为0,证明该行列式为0

n阶行列式中有n(n-1)个以上元素为0,不妨令其最小值n(n-1)+1个元素为0,即有n^2-n+1个元素为0.(n^2-n+1)-n=n^2-2n+1=(n-1)^2≥0当n=1时取等号.因为n阶

设n阶方阵A的行列式为a,且每一行元素之和为b(不等于0),则A的第n列元素的代数余子和是?

过程如下,把|A|中所有列均加到第n列,结果第n列元素变为b,然后从第n列中提取b,设提取后的行列式为|B|,则b|B|=a,即|B|=a/b,把|B|行第n列展开,就得到|A|的第n列元素的代数余子

设3阶矩阵A的各行元素之和均为0,且r(A)=2,则 AX+0的通解为

k(1,1,1)^TA的各行元素之和均为0说明A(1,1,1)^T=0r(A)=2说明AX=0的基础解系含1个向量

已知n阶行列式D的每一列元素之和均为零,求D=?

D=0把所有行都加到第1行,则由D的每一列元素之和均为零知第1行的元都是0,所以行列式=0

设n阶行列式D中每一行的元素之和为零,则D=

D=0.由已知,将所有列加到第1列,第1列元素全为0故行列式等于0

设n阶行列式D=aijn=4且D中各列元素之和均为3 并记元素aij的代数余子式为Aij 试求 所有Aij之和

将D的各行都加到第一行上,那么第一行都是3将第一行的3提出来,那么第一行的元素就都为1用第一行的元素乘以其各自的代数余子式,就是3×∑A1j=4那么第一行的代数余子式之和为4/3将D的各行都加到第二行

设A为3阶可逆方阵,且各行元素之和均为2,则A必有特征值2,为什么?

AX=2XX=(1,1,1)T再问:没看懂再答:A(1,1,1)T=2(1,1,1)T如第一行1*a11+1*a12+1*a13=a11+a12+a13=2(各行元素之和均为2,)再问:还是不清楚啊!