设n阶行列式Dn的元素满足aij=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:16:58
设n阶行列式Dn的元素满足aij=
计算n阶行列式Dn计算n阶行列式

用性质化为上三角形.经济数学团队帮你解答.请及时评价.

设n阶行列式D=a,且D的每行元素之和为b(b不等于0),则行列式D的第一列元素代数余子式之和等于多少.详

a/b将每一列的各元素(除去第一列)加到第一列上来,则第一列全为b提取b出来,则第一列全为1,记此时的行列式为E,则a=bIEI,∵行列式等于对应于它的任意一列各元素与其代数余子式的乘积之和∴IEI即

设n阶行列式中有n(n-1)个以上元素为0,证明该行列式为0

n阶行列式中有n(n-1)个以上元素为0,不妨令其最小值n(n-1)+1个元素为0,即有n^2-n+1个元素为0.(n^2-n+1)-n=n^2-2n+1=(n-1)^2≥0当n=1时取等号.因为n阶

A是n阶矩阵,a1,a2,.an是线性无关的n维向量,满足Aai=ai+1(i从1取到n-1),Aan=a1,求A行列式

|A||a1,...,an|=|A(a1,...,an)|=|a2,a3,...,an,a1|最后一列依次与前一列交换,直到交换到第1列,共交换n-1次=(-1)^(n-1)|a1,...,an|由于

设n阶行列式D的元素全为1或-1,求证D的值能够被2^(n-1)整除.

用A(ij)表示元素a(ij)的代数余子式.数学归纳法.n=2时可以验证结论成立.假设结论对

三、 设n阶行列式D的元素全为1或-1,求证D的值能够被 整除.

题目有问题吧,能够被什么整除?按你说的全为1或-1的话,行列式为0.能被什么整除?

设n阶行列式中有n^2-n个以上的过元素为零,证明该行列式为零.

n阶行列式每行恰有n个元素,共有n^2个元素若超过n^2-n个元素为零则必有一行的元素都是零(否则,至少n个元素不为0,所以等于零的元素至多n^2-n个,与已知矛盾)由行列式的性质知行列式等于0.

设n阶行列式中有n^2 -n个以上的元素为零,证明该行列式为零

n阶行列式中有n^2-n个以上的元素为零,即n阶行列式中非零的元素

设一个n阶行列式的元素由条件Aij=min(i,j)给定,计算此行列式

解:由已知D=111...11122...22123...33......123...n-1n-1123...n-1nri-r(i-1),i=n,n-1,...,2--从第n行开始,每行减上一行111

设n阶行列式D中每一行的元素之和为零,则D=

D=0.由已知,将所有列加到第1列,第1列元素全为0故行列式等于0

若n阶行列式Dn中每一行上的n个元素之和等于零,则Dn=

Dn=0,把每一列都加在其中一行,使这一行等于0,根据行列式的性质有一行(列)等于0,那么行列式也等于0

设n阶行列式中有n^2-n个以上元素为零,则行列式=_______ 麻烦讲解详细点,

n阶行列式中有n^2-n个以上元素为零则至少有一行元素全为0(否则每行最多有n-1个0,全部最多有n(n-1)=n^2-n个0)所以行列式等于0再问:为什么每行最多有n-1个0啊?可以再解释一下吗?再

集合的子集族设X为一个n元素集, F={A1,A2,...,Am}是X的一个子集族, 且满足Ai交Aj为单元素集(对于任

我的解答需要一些简单的线性代数.我们先把Ai按元素个数从小到大排序,也就是1

设n阶矩阵A满足A方等于A,并且A不等于E,证明A的行列式等于0

AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0

设n阶行列式Dn=|aij|,已知aij=-aji,i,j=1,2,Ln,n为奇数,求Dn的值

奇数阶反对称矩阵的行列式等于0.利用Dn=Dn^T=(-1)^nDn=-Dn可知Dn=0.

设n阶行列式有n平方-n个以上元素为零,证明该行列式为零

n阶行列式共有n²个元素,如果它有n²-n个以上的元素为0,那么它有零行(一行全是0).可以用反证法说明,假设没有零行,那么每一行至少有一个非零元,n行至少就有n个非零元,那么零元素的

n阶行列式 Dn=|x a ...a| |a x ...

所有列加到第1列所有行减第1行行列式化为上三角D=(x+(n-1)a)(x-a)^(n-1)再问:能详细点吗?最好发张图再答:所有列加到第1列x+(n-1)aa...ax+(n-1)ax...a...

线性代数Dn计算行列式中所有元素的代数余子式之和

这个题主要考察行列式展开性质和行列式的性质

设n阶矩阵A的行列式|A|=0,且A中元素...如图,第十题,

1.因为AA*=|A|E=0所以A*的列向量都是Ax=0的解.2.因为Aki≠0,所以r(A)=n-1所以Ax=0的基础解系含n-r(A)=1个解向量而A*的第k列(Ak1,Ak2,...,Akn)≠