设n阶行列式D=a,且D的每行元素之和为b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 18:25:12
设n阶行列式D=a,且D的每行元素之和为b
设A为n为阶矩阵,且A^2+3A=0,3A^2+A=0,则A的行列式det(A)=?

设B=A^2,那么B+3A=0,3B+A=0,解得A=0,B=0,所以|A|=0.再问:Ϊʲô�����ҳ�A^-1��������������0���������AA^-1=E再答:�϶����ˣ�

设n阶行列式D=a,且D的每行元素之和为b(b不等于0),则行列式D的第一列元素代数余子式之和等于多少.详

a/b将每一列的各元素(除去第一列)加到第一列上来,则第一列全为b提取b出来,则第一列全为1,记此时的行列式为E,则a=bIEI,∵行列式等于对应于它的任意一列各元素与其代数余子式的乘积之和∴IEI即

设n阶矩阵A的行列式等于D,则/-A/等于,在书上哪里

|-A|=(-1)^n|A|=(-1)^nD.-A是A中所有元素都乘-1|-A|每行提出一个-1,则有|-A|=(-1)^n|A|这是方阵的行列式的性质

设n阶行列式D的元素全为1或-1,求证D的值能够被2^(n-1)整除.

用A(ij)表示元素a(ij)的代数余子式.数学归纳法.n=2时可以验证结论成立.假设结论对

三、 设n阶行列式D的元素全为1或-1,求证D的值能够被 整除.

题目有问题吧,能够被什么整除?按你说的全为1或-1的话,行列式为0.能被什么整除?

设n阶行列式D中每一行的元素之和为零,则D=

D=0.由已知,将所有列加到第1列,第1列元素全为0故行列式等于0

设n阶行列式D=aijn=4且D中各列元素之和均为3 并记元素aij的代数余子式为Aij 试求 所有Aij之和

将D的各行都加到第一行上,那么第一行都是3将第一行的3提出来,那么第一行的元素就都为1用第一行的元素乘以其各自的代数余子式,就是3×∑A1j=4那么第一行的代数余子式之和为4/3将D的各行都加到第二行

设A是3阶方阵,且A的行列式=2,则(2A^*-A^-1)的行列式=

27/2.计算过程如图,经济数学团队帮你解答.请及时评价.再问:A^*=A的行列式乘以A^-1=2A^-1为什么

设A是n阶方阵,且行列式|A|=25,则行列式 |-4A|=

用性质计算.经济数学团队帮你解答.请及时评价.

n阶行列式 每行各元素之和为零 各列元素之和为零 证明 行列式D的所有代数余子式彼此相等

若rank(A)再问:请能用行列式的知识吗?那个符号什么额看不懂谢谢再答:只用行列式的工具也可以,就是打起来比较麻烦,我用一个小例子给你演示一下,一般形式你自己去写举个三阶的例子abcdefghi(1

设n 阶矩阵A 的行列式等于D ,则(KA)* =

知识点:|A*|=|A|^(n-1)|(kA)*|=|kA|^(n-1)=(k^n|A|)^(n-1)=k^n(n-1)|A|^(n-1)=k^n(n-1)D^(n-1)

设n阶方阵A的行列式detA=a≠0,且A的每行元素之和为b,求detA的第一列元素的代数余子

这个很简单,得a/b.把行列式按第一列展开,设aij的代数余子式是Aij,则有a11A11+a21A21+...+an1An1=a,当m≠i或n≠j时,有对amnAij求和是0,这个你知道吧,因此有b

设n阶方阵A的行列式|A|=0,且伴随矩阵A*≠0,则秩(A)=

n-1因为R(A)必定小于n而A*是各n-1阶子式组成的矩阵其不为0说明A比能取到至少1个不为0的n-1阶子式故R(A)=n-1

设A为n阶实对称矩阵,且A^2+A-3E=0,D=1是A的一重特征值,计算行列式A+2E的值

因为A^2+A-3E=0所以A的特征值满足λ^2+λ-3=0题目不对吧再问:是对的呀老师哦哦是A^2+2A-3E=0老师再帮忙解答下把谢谢啦再答:因为A^2+2A-3E=0所以A的特征值满足λ^2+2

设n阶矩阵A的行列式|A|=0,且A中元素...如图,第十题,

1.因为AA*=|A|E=0所以A*的列向量都是Ax=0的解.2.因为Aki≠0,所以r(A)=n-1所以Ax=0的基础解系含n-r(A)=1个解向量而A*的第k列(Ak1,Ak2,...,Akn)≠

设A为n阶方阵,且A的行列式=1/2,则(2A*)*是多少

用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.

设A为n阶矩阵,且行列式A=a,K为任意常数,则行列式kA=?

这是方阵的行列式的性质|kA|=k^n|A|=ak^n

【线性代数】设n阶矩阵A的行列式|A|=d≠0,求|A*|

由于A×A*=|A|E(E为A的同阶单位矩阵,这里是n阶)所以|A|×|A*|=|A×A*|=||A|E|=|A|^n=d^n;|A*|=|A|^(n-1)=d^(n-1)再问:|A|^n怎么得到的?

设A,B,C,D是数域F上n阶方阵,且AC = CA.求证:行列式| (A,B);(C,D) | = | AD - CB

当|A|=0时,令f(x)=|xE+A|,f(x)是次数不超过n的多项式,定有无数x使f(x)≠0用xE+A替换原来A的位置,因为无数x满足条件,所以是恒等式,取x=0即得证.