设n阶行列式A满足A^2 2A-E=0,求A^-1和(A-4E)^-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:15:08
因为AA'=E所以|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=|A||(E+A)'|=|A||E+A|=-|A+E|所以2|A+E|=0所以|A+E|=0.所以A+E不可逆.
|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1
|-A|=(-1)^n|A|=(-1)^nD.-A是A中所有元素都乘-1|-A|每行提出一个-1,则有|-A|=(-1)^n|A|这是方阵的行列式的性质
证明:|A+E|=|A+AA^T|=|A(E+A^T)|=|A||(E+A)^T|=|A||A+E|所以|A+E|(1-|A|)=0因为|A|
根据已知条件有:A^T=A(A^T表示A的转置),A^2=A*A=A^T*A=A.对任意的向量X,有X^T*A*X=X^T*A^2*X=X^T*A*A*X=X^T*A^T*A*X=(AX)^T*(AX
|A|=0,则秩小于n,行秩小于n,根据定理行向量个数为n比秩大,得证!
|A*|=|A|^(n-1)=2^(n-1)第一个等号是知识点
因为AAT=E,所以A为正交矩阵,且|A|再问:直接把A提出来,|AB|=|A||B|
用性质计算.经济数学团队帮你解答.请及时评价.
AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0
首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得
/>因为A是正交矩阵所以A(A^T)=E两边取行列式得:|A||A^T|=1又|A^T|=|A|所以|A|²=1得|A|=±1答案:|A|=1或-1
n-1因为R(A)必定小于n而A*是各n-1阶子式组成的矩阵其不为0说明A比能取到至少1个不为0的n-1阶子式故R(A)=n-1
A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1
(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x
H=ABBAP=EE0EQ=E-E0E则PHQ=A+B0BA-B所以|H|=|PHQ|=|A+B||A-B|
你是问的下面这三个等式为什么成立,还是你的标题的题目呢?如果是下面这三个等式的话第一个等式是因为(E+A')=E'+A'=(E+A)'第二个等式是因为一个矩阵的行列式与它的转置的行列式相等.
这是方阵的行列式的性质|kA|=k^n|A|=ak^n
|2A|=2^n再问:能讲一下过程吗再答:|2A|=2^n|A|=2^n
由于A×A*=|A|E(E为A的同阶单位矩阵,这里是n阶)所以|A|×|A*|=|A×A*|=||A|E|=|A|^n=d^n;|A*|=|A|^(n-1)=d^(n-1)再问:|A|^n怎么得到的?