设n阶矩阵A的各行元素之和为常数c,则A3的各行元素之和为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:14:28
设n阶矩阵A的各行元素之和为常数c,则A3的各行元素之和为
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则方程组AX=0的通解为

因为r(A)=n-1所以AX=0的基础解系所含向量的个数为n-r(A)=n-(n-1)=1.又因为A的各行元素之和均为零,所以a=(1,1,...,1)'是AX=0的一个非零解故a=(1,1,...,

已知n(n>=2)阶方阵A的伴随矩阵A*为奇异矩阵,且A*的各行元素之和为3,则其次方程AX=0的基础解系为.

由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..

若n阶可逆矩阵a的各行元素之和均为a证明a不等于0

考察矩阵A的行列式,由于的各行元素之和均为a,故将a的行列式的第二至第n列都加到第一列,则第一列都变为a,如果a=0则|A|=0,与矩阵A可逆矛盾,所以a不等于0.

证明题:若n矩阵A的各行元素之和均为a 则a不等于0 且a是A的一个特征值

a为什么不能是0?题目也没说A是可逆矩阵再问:打漏了。。。是可逆矩阵再答:那么a不等于0是显然的,反证法可证;根据定义可知a是特征值,对应特征向量v的各元素全为1,即Av=av再问:为什么a是特征值呢

设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为______.

n阶矩阵A的各行元素之和均为零,说明(1,1,…,1)T(n个1的列向量)为Ax=0的一个解,由于A的秩为:n-1,从而基础解系的维度为:n-r(A),故A的基础解系的维度为1,由于(1,1,…,1)

n阶方阵A各行元素之和为n,A^2各行元素之和都等于多少

A^2(1,1,...,1)^T=AA(1,1,...,1)^T=A(n,n,...,n)^T=nA(1,1,...,1)^T=n(n,n,...,n)^T=n^2(1,1,...,1)^T所以A^2

设n阶矩阵A的各行元素之和均为0,且A的秩为n-1,则齐次线性方程组的通解?网上搜了,但是我还是不懂为什么各行元素均为0

A的秩为n-1,说明AX=0的基础解系含n-r(A)=1个解向量.A的各行元素之和均为0,说明A(1,1,...,1)^T=(0,0,...,)^T=0即(1,1,...,1)^T是AX=0的非零解,

已知n阶方阵A的伴随矩阵是奇异矩阵,伴随矩阵各行元素之和为3.则Ax=0的基础解系

由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..

设3阶矩阵A的各行元素之和均为0,且r(A)=2,则 AX+0的通解为

k(1,1,1)^TA的各行元素之和均为0说明A(1,1,1)^T=0r(A)=2说明AX=0的基础解系含1个向量

为什么已知矩阵各行的元素之和为a,a就是它的一个特征值呢?

前提是该矩阵是方阵,这样所有元素均为1的列向量就是a对应的特征向量

设n阶可逆矩阵A中每行之和元素为常数a,证明A^(-1)的每行元素之和为a^(-1)

证明:令列向量x=(11.1)^-1则由题意可知Ax=(aa.a)^-1上式两边同乘A^-1可得x=A^(-1)*(aa……a)^-1,两边同除a得(1/a)x=A^(-1)(11.1)^(-1)积(

两道线性代数题1、设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m.2、设

详细的答案过程在我空间相册里请点链接:http://hi.baidu.com/%CE%C4%CF%C9%C1%E9%B6%F9/album/item/d5e677008dcb0951728b6581.

线性代数:(设3阶实对称矩阵A的各行元素和均为3,)

你注意,解有两个向量作为基,那么他的解在一个平面上.这意味着有两个自由变量n-r=2,换句话说,它的秩r=1.3*3的矩阵,r=1,这说明有两个线性相关的行.必然,行列式为0.而det(A)=特征值之

设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m

每一行元素之和为a则A(1,1...1)T=a(1,1...1)T所以A^m(1,1...1)T=a^m(1,1...1)T即A^m的每一行元素之和为a^m(1,1...1)T是个列向量,每个元素都是

设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?

因为A(1,1,1)'=5(1,1,1)'.所以A必有特征向量(1,1,1)'.

求助:设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?

因为A(1,1,1)'=5(1,1,1)'.所以A必有特征向量(1,1,1)'.

设A是n阶可逆矩阵 若A的每一行元素之和为c 求证A^-1每一行元素之和1/c

证明:设x=(1,1,...,1)^T.由已知A的每一行元素之和为c所以Ax=(c,c,...,c)^T=cx.所以A^-1Ax=cA^-1x即x=cA^-1x所以A^-1x=(1/c)x.--注:因