设n阶矩阵A.且A^k=0(k大于等于2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:55:59
我们知道,如果矩阵B和C成立BC=En,则B和C互为逆矩阵,从而当然B和C都是可逆的.用这个知识,本题只要证明(En-A)*(En+A+A的平方+……+A的k-1次方)=En即可,这很简单可得.
首先k比m和n都要小,或者相等,否则显然.若r(A)=k,存在k行determinant不为0.那么与他们对应的AB里的k行也不为0,因为B非零.这与AB=0矛盾,所以r(A)
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX
A的k次幂等于0矩阵指某个正整数kA^k=0设A的特征值λ则:Ax=λx(x≠0为特征向量)A^(k)x=0=λ^(k)x=》λ=0
假设A相似于对角矩阵Λ,则由相似的定义有A=P^(-1)ΛP,P可逆所以A^k=(P^(-1)ΛP)^k=P^(-1)Λ^k*P=O所以Λ^k=O即Λ=O从而A=P^(-1)ΛP=O与A是n阶非0矩阵
由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1
I-A^k=(I-A)(I+A+...+A^(k-1)=I所以I-A可逆.其逆阵为(I+A+...+A^(k-1)
(E-A)(E+A+A^2+...+A^k-1)=E+A+A^2+...+A^k-1-A-A^2-...-A^k-1-A^k=E所以E-A可逆,且其逆为E+A+A^2+...+A^k-1
证:设m0a+m1Aa+m2A^2a+……+m(k-1)A^(k-1)a=0(1)用A^(k-1)左乘等式两边m0A^(k-1)a+m1A^ka+m2A^(k+1)a+……+m(k-1)A^(2k-2
设a是A的特征值则a^k是A^k的特征值(定理)而A^k=0,零矩阵的特征值只能是0所以a^k=0所以a=0即A的特征值只能是0.
∵AA*=A*A=|A|E,∴A*=|A|A-1,从而:(kA)*=|kA|•(kA)-1=kn|A|•1kA−1=kn−1|A|A−1=kn−1A*,故选:B.
A的伴随矩阵的行列式等于A的行列式的n-1次方所以最后的答案是k的n次方乘以a的n-1次方啦o(∩_∩)o...
E-A^k=(E-A)(E+A+A^2+A^3+……+A^(k-1))且A^k=O所以有E=(E-A)(E+A+A^2+A^3+……+A^(k-1))由逆矩阵的定义得E-A可逆且E-A=I+A+A^2
由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<
设有常数m1,m2..mk使得m1a+m2Aa+,mkA^(k-1)a=0上式乘以A^(k-1)有m1A^(k-1)a=0(A^ka=0则对任意l>=k,A^(l)a=0)A^k-1α≠0所以m1=0
A^(k+1)α=A(A^kα)=A0=0其余类似A^(k+i)=A^iA^kα=A^i0=0.若A^(k-i)α=0,i>=2则A^(k-1)α=A^(i-1)A^(k-i)α=A^(i-1)0=0
这是方阵的行列式的性质|kA|=k^n|A|=ak^n
AB=kE(k不等于0).①|A||B|=|AB|=|kE|≠0A,B可逆①->:B=kA^(-1)∴BA=kA^(-1)A=kE再问:A,B可逆,为什么?①->:B=kA^(-1)可以写明白点吗?再