设n阶方阵A满足A的平方加A-3I=0,证明方阵A-I可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:19:59
设n阶方阵A满足A的平方加A-3I=0,证明方阵A-I可逆
设A是n阶方阵,且(A+E)的平方=O,证明A可逆

(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3E-A)的逆矩阵

A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

设n阶方阵A满足A*A-A+E=0,证明A喂可逆矩阵

汗啊,是平方啊…………我以为是伴随呢…………A²-A+E=0E=A-A²=A(E-A)(E-A)A=A-A²=E所以A可逆,逆矩阵是E-A

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

设n阶方阵A满足A平方=En,|A+En|不等于0,证明:A=En.

证明:由A^2=En得0=A^2-En=A^2-En^2=(A+En)(A-En)因为|A+En|≠0,故A+En必有逆矩阵(A+En)^(-1),上式两边左乘(A+En)^(-1),便得(A+En)

设A是n阶方阵,满足A乘以A一撇等于E,|A|

[A+E]=[A+A*A']=[A][E+A']=[A][(A+E)']=[A]*[A+E]得到(1-[A])[A+E]=0因为|A|

n阶方阵A满足A的平方等于A,请利用矩阵的满秩分解证明A的秩加A-E的秩大于等于n,并进而证明其等于n.

A^2=A->A(A-E)=0所以r[A(A-E)]≥r(A)+r(A-E)-nr(A)+r(A-E)≥r(A-A+E)所以r(A)+r(A-E)=n也可以用分块矩阵做

设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)

证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)

设A是n阶方阵,且A的平方等于A,证明A+E可逆

假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾

设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3A-E)的逆矩阵

A*A-5A+7E=A(A-3E)-2A+7E=A(A-3E)-2(A-3E)+E=(A-2E)(A-3E)+E=0∴(A-3E)(E-2A)=E∴A-3E可逆,逆矩阵是E-2A

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

线性代数提问:设方阵A满足A的平方=A.证明A的特征值只能为0或1

设A的特征值为λ,则|A-λE|=0同时AA=A,所以|AA-λE|=0所以AA和A的特征值相同而又有AA的特征值是A的平方,所以λ^2=λ,所以λ=1或者0

n阶方阵A满足,A的平方=0,证A的秩大于等于n/2

(结论应该是r(A)=.不然取A=0直接得到矛盾)考虑两个线性空间:(1)A的列空间,即A的各列向量张成的线性空间.它的维数即是A的列秩,等于A的秩,即r(A).(2)Ax=0的解空间,即Ax=0的所

设N阶方阵A满足A的平方等于A,证明A或者是单位矩阵或者是不可逆矩阵

证明假定A可逆,其逆阵为BE=AB两边同时乘以A得A=AAB=AB于是A=E故A或者不可逆,或者为单位阵E再问:这只证明了A为单位矩阵啊再答:假定A可逆,则必为单位阵;或者不可逆这不就是要证明的结论吗