设N为AX=b的一个解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:07:24
因为R(A)=n-1所以AX=0的基础解系含n-r(A)=1个解向量所以AX=0的通解为k(a1-a2).
设B=(B1,B2,.,Bs)AB=A(B1,B2,.,Bs)=(AB1,AB2,.,ABs)=(0,0,.,0)ABi=0所以B的列向量Bi都是AX=0的解.以上过程步步可逆,所以AB=0的充要条件
必须无解.因为x的秩<b的秩.
是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解非齐次线性方程组就有唯一解r(A)
D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确
|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0有非零解,则r
再答:这是个定理,老师让记住的。再问:奥谢谢啊再问:你是学什么的啊对于矩阵这一块我很迷糊
因为矩阵A的秩为n-1,所以齐次线性方程组AX=0的基础解系含有的向量数目为1,a1,a2为Ax=b的两个解,所以a1-a2为AX=0的一个解,若a1-a2非零,则a1-a2就是AX=0的一个基础解系
设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。
证明:设k1a+k2(a+b1)+.+k_(n-r+1)(a+bn-r)=0(1)两边左乘以矩阵A,(k1+k2+……+k_n-r+1)B+k2Ab1+k_n-r+1Abn-r=0由于Abi=0(i=
设ka+k1b1+...+krbr=0用A左乘等式两边,再由已知得kb=0所以k=0所以k1b1+...+krbr=0因为b1,...,br是基础解系(线性无关)所以k1=...=kr=0所以a,b1
证明:由已知α1,.α(n-r)线性无关.且Aβ=b≠0,Aαi=0,i=1,2,...,n-r(1)设kβ+k1α1+...+k(n-r)α(n-r)=0用A左乘上式两边得kAβ+k1Aα1+...
detA=0再问:为啥啊??我就是不知道为什么?再答:如果detA≠0那么方程AX=b又唯一解而现在有2个解了,所以detA=0
选D,r不可能>n的,CD排除,r=n是齐次方程只有零解,其实这个书上有结论的.再问:哦,谢谢了,再答:客气!
|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0
"对任何的m维列向量b,AX=b有解"这说明r(A)=m(A^TA)=r(A)=m但A^TA是n阶方阵,n可能大于m.所以A^TA不一定可逆.
证明过程如图.经济数学团队帮你解答.请及时评价.再问:充分性证明第一行,A*为什么不等于零?R(A*)为什么小于n?充分性证明第六行,α1,...αn-1为什么是A*X=0的基础解系?充分性证明最后,
证明:Ax=b有唯一解,那么r(A,b)=r(A)=n,而A为n阶矩阵,所以r(A)=n可以得到A可逆同理,n阶矩阵A可逆,那么r(A)=n,而增广矩阵r(A,b)显然此时等于r(A),所以r(A,b
证明:因为任意一个n维向量都是方程组AX=0的解,所以AX=0的解空间的维数是n=n-r(A),所以r(A)=0.即A是零矩阵.n维向量是指n维向量空间R^n中的向量.
因为这时系数矩阵和增广矩阵的秩相等,且都等于未知数的个数.参考教材中,“线性方程组有解的判定”相关知识点.亲,记得采纳哦.再问:可这时增广矩阵可以比系数矩阵的秩多一阿?再答:亲,是我疏忽了,这个结论是