设M为△ABC内任一点,AM,BM,CM分别交
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:37:32
证明:作MP⊥BC于P,AQ⊥BC于Q.则:MP∥AQ,⊿DPM∽⊿DQA,MD/AD=MP/AQ=(MP*BC/2)/(AQ*BC/2).即MD/AD=S⊿BCM/S⊿BCA;同理:ME/BE=S⊿
设HA,HB,HC是三棱锥三个侧面上的高,P为底面内任一点,P到三个侧面相应的距离分别为PA,PB,PC,则PA/HA+PB/HB+PC/HC=1
设ha,hb,hc,hd三棱锥A-BCD四个面上的高.P为三棱锥A-BCD内任一点,P到相应四个面的距离分别为pa,pb,pc,pd我们可以得到结论:paha+pbhb+pchc+pdhd=1.VP-
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC再问:AB+AM+CM+PM>
图我就不画了,你先画个图吧,按照我说的做::在AB,BC,CA上分别取点D,E,F,使PD=DB,PE=EC,PF=FA,AB+BC+CA=(AD+BE+CF)+(DB+EC+FA)=(AD+DP)+
作CF‖MN交AD于F,BE‖MN交AD延长线于E证:∵CF‖MN,BE‖MN∴CF‖BE∴CF/BE=CD/BD(三角形一边的平行线截其他两边所在直线,截得的对应线段成比例)∵D是BC中点∴BD=C
等边三角形ABC的边长为1,从而他任意一边上的高为h=√3/2连接PA,PB,PC,设P到边BC,AC,AB上的高分别为PD,PE,PF又S△ABC=S△PAB+S△PAC+S△PBC即:h*BC/2
证明:连接MA,MB,MC.用勾股定理BD=BE,CE=CFBD^2=DG^2+BG^2BE^2=Bk^2+EK^2CE^2=Ck^2+EK^2CF^2=CH^2+FH^2DG^2+BG^2=Bk^2
延长AM交BC延长线于D,∵BM平分∠ABC,BM⊥AM,∴ΔBMA≌ΔBMD,∴AM=DM,BD=AB=10,∴CD=10-6=4,∵N是AC的中点,∴MN是ΔADC的中位线,∴MN=1/2CD=2
向量MO=向量MA+λ(向量AB/|向量AB|+向量AC/|向量AC|)得到AO=λ(向量AB/|向量AB|+向量AC/|向量AC|)向量AB/|向量AB|,向量AC/|向量AC|都是单位向量得到AO
根据题意知,MN是三角形PAB的中位线,连结PO知:PO被MN平分.因为点P、O为定点,所以PO的中点Q为定点,MN过PO的中点,即,直线MN恒过一个定点Q
延长AM交BC的延长线与D,由BM平分∠ABC,AM⊥BM,可知AB=BD,所以CD=4,N为AC的中点、M为AD的中点,所以NM//CD,所以MN=2
概念不清呀,过程省略向量2字:AM=2AN=2(xAB+yAC),而:MB=AB-AM,CM=AM-ACCM与MB是同向向量,故满足关系:MB=kCM,即:AB-AM=k(AM-AC)即:(k+1)A
s=1/2*6*8-1/2*6*x=24-3x当x=4时s=12
∵三角形中任意两边之和大于第三边,∴OA+OB>AB,OA+OC>CA,OB+OC>BC,∴2(OA+OB+OC)>AB+BC+CA,即12(AB+BC+CA)<OA+OB+OC;∵三角形中任意两边之
4、利用定比分点的向量形式 结果=1/2 过程如下图:
1.因为DE//BCFG//CAHI//AB,所以△ODG相似△OFI相似△OHE相似△ABC,所以S1:S2:S3:S=OD^2:IF^2:OE^2:BC^2=BI^2:IF^2:CF^2:BC^2
证明:作PM垂直BC于M,AN垂直BC于N.则:PM∥AN,得:PM/AN=PQ/AQ;S⊿PBC/S⊿ABC=(BC*PM/2)/(BC*AN/2)=PM/AN=PQ/AQ;(1)同理;S⊿APC/
赶快回答一下,不然关闭了,就可惜了悬赏分了1、由a^2-c^2=b^2-(8bc)/(5)得b^2+c^2-a^2=(8/5)bc所以cosa=(b^2+c^2-a^2)/2bc=4/5∵a=3∴b=
证明:因为△BDP和△ABD是等高三角形,所以△BDP和△ABD的面积的比取决于底的比,即S△BDP/S△ABD=DP/AD,同理:S△CDP/S△ACD=DP/AD,所以DP/AD=S△BDP/S△