设m.n都是正整数,m是奇数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:13:56
n=5-mmn=(5-m)m=-m^2+5m=-(m^2-5m+25/4)+25/4=-(m-5/2)^2+25/4因为m,n是正整数所以m=3时取最大值-(3-2.5)^2+25/4=-1/4+25
证:设m=a^2+b^2,n=c^2+d^2,(a、b、c、d是正整数)mn=(a^2+b^2)(c^2+d^2)=(ac)^2+(bd)^2+(ad)^2+(bc)^2=[a(c+d)]^2+[b(
给你写一段C++代码:#includeusingnamespacestd;intmain(){intsum=0;intcount=0;for(inti=1;i
x的m次方加y的n次方减4的m加n次方是m≥n,m次3项式;m<n,n次3项式;很高兴为您解答,skyhunter002为您答疑解惑如果本题有什么不明白可以追问,
证明:令m/n=t(t>=0)则m=nt(m+7*n)/(m+n)=(t+7)*n/n(t+1)n不为零原式=(t+7)/(t+1)=1+6/(t+1)1)0根号7则1+6/(t+1)
PrivateSubCommand1_Click()DimmAsLong,nAsIntegerm=Val(InputBox("请输入一个数"))Forn=1TomIf2^n>=mThenMsgBox"
∵1n2+n=1n-1n+1,∴1m2+m+1(m+1)2+(m+1)+…+1n2+n,=1m-1m+1+1m+1-1m+2+…+1n-1n+1,=1m-1n+1=123=2223×22,∴m=22,
因为100
m+n>=mm+n>=n所以次数为m+n
1/(n^2+n)=1/n(n+1)=1/n-1/(n+1)1/(m^2+m)+1/[(m+1)^2+(m+1)]+…+1/(n^2+n)=1/m-1/(m+1)+1/(m+1)-1/(m+2)+..
我想了蛮久.觉得第一问是比较难的,当然我认为你忘记打括号了.因为k是整数,那么n^/(mn)是整数,得出m|n.这里只要取m=n=1,则k=3不是平方数.如果不是,而是n^/(nm+1)那么有(mn+
a^3/b^2x^(3m-2n)=x^3m/x^2n=(x^m)^3/(x^n)^2=a^3/b^2解毕
MN最高都是3次则M-N中,最高的不会出现高于三次的所以M-N最多3次而如果M和N的3此项系数相等则M-N就没有三次项了,这样次数就低于3次所以M-N的次数是最多3次
这个结论不成立,如a=6,m=7,a=6(mod7),a+a²=0(mod7),a+a²+a³=6(mod7),...余数是6,0,6,0的循环,不包含1.结论改成-1(
1260分解质因数,1260=2*2*3*3*5*7那么N³=2*2*3*3*5*7*m只要这一系类质因数中凑够:2*2*2*3*3*3*5*5*5*7*7*7就可以组合为:(2*3*5*7
1260=2×2×3×3×5×7因为N是自然数,观察上式,要让m中有一个2,一个3,两个5,两个7方可.所以m最小为2×3×5×5×7×7=7350此时1260×m=2^3×3^3×5^3×7^3=(
两边取对数再除以mn得ln(1+m)/m>ln(1+n)/n只需证明f(x)=ln(1+x)/x在x≥2上递减即可事实上f'(x)=[x/(1+x)-ln(1+x)]/x^2当x≥2时ln(1+x)>
#include<stdio.h>voidmain(){ longx=1,m,n=0; scanf("%ld",&m); for(
我做了一种证明方法,不过可能麻烦点,总比没有强吧~你前边应该是1/4吧(四分之一),写反了个了.要证明这个式子为整数,就是要证明(m^2+n^2-m-n)为4的整数倍.一个整数除以4,余数只能为0、1